Nerve lengthening and subsequent end-to-end repair yield more favourable outcomes compared with autograft repair of rat sciatic nerve defects
Holly M. Howarth
Department of Bioengineering, University of California, San Diego, La Jolla, CA
Search for more papers by this authorAdarsh Kadoor
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorRayeheh Salem
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorBrogan Nicolds
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorStephanie Adachi
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorAchilles Kanaris
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorRichard M. Lovering
Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
Search for more papers by this authorJustin M. Brown
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
Search for more papers by this authorCorresponding Author
Sameer B. Shah
Department of Bioengineering, University of California, San Diego, La Jolla, CA
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Research Service, VA San Diego Healthcare System, San Diego, CA
Correspondence
Sameer B. Shah, Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA 92093.
Email: [email protected]
Search for more papers by this authorHolly M. Howarth
Department of Bioengineering, University of California, San Diego, La Jolla, CA
Search for more papers by this authorAdarsh Kadoor
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorRayeheh Salem
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorBrogan Nicolds
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorStephanie Adachi
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorAchilles Kanaris
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Search for more papers by this authorRichard M. Lovering
Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
Search for more papers by this authorJustin M. Brown
Department of Neurosurgery, Massachusetts General Hospital, Boston, MA
Search for more papers by this authorCorresponding Author
Sameer B. Shah
Department of Bioengineering, University of California, San Diego, La Jolla, CA
Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
Research Service, VA San Diego Healthcare System, San Diego, CA
Correspondence
Sameer B. Shah, Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA 92093.
Email: [email protected]
Search for more papers by this authorAbstract
Outcomes of end-to-end nerve repairs are more successful compared with outcomes of repairs bridged by nerve grafts. However, end-to-end repairs are not always possible for large nerve gaps, as excessive tension may cause catastrophic failure. In this study, we built on previous nerve-lengthening studies to test the hypotheses that gradual lengthening of the proximal stump across a large nerve gap enables an end-to-end repair and such a repair results in more favourable regenerative outcomes than autografts, which represent the gold standard in bridging nerve gaps. To test these, we compared structural and functional outcomes in Lewis rats after repair of sciatic nerve gaps using either autografts or a novel compact internal fixator device, which was used to lengthen proximal nerve stumps towards the distal stump over 2 weeks, prior to end-to-end repair. Twelve weeks after the initial injury, outcomes following nerve lengthening/end-to-end repair were either comparable or superior in every measure compared with repair by autografting. The sciatic functional index was not significantly different between groups at 12 weeks. However, we observed a reduced rate of contracture and corresponding significant increase in paw length in the lengthening group. This functional improvement was consistent with structural regeneration; axonal growth distal to the injury was denser and more evenly distributed compared with the autograft group, suggesting substantial regeneration into both tibial and peroneal branches of the sciatic nerve. Our findings show that end-to-end repairs following nerve lengthening are possible for large gaps and that this strategy may be superior to graft-based repairs.
CONFLICT OF INTEREST
We report no conflicts of interest.
REFERENCES
- Bain, J. R., Mackinnon, S. E., & Hunter, D. A. (1989). Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plastic and Reconstructive Surgery, 83(1), 129–136. https://doi.org/10.1097/00006534-198901000-00024
- Bhatia, A., Doshi, P., Koul, A., Shah, V., Brown, J. M., & Salama, M. (2017). Contralateral C-7 transfer: Is direct repair really superior to grafting? Neurosurgical Focus, 43(1). https://doi.org/10.3171/2017.4.focus1794
- Bray, D. (1984). Axonal growth in response to experimentally applied mechanical tension. Developmental Biology, 102(2), 379–389. https://doi.org/10.1016/0012-1606(84)90202-1
- Brown, J. M., Shah, M. N., & Mackinnon, S. E. (2009). Distal nerve transfers: A biology-based rationale. Neurosurgical Focus, 26(2), E12. https://doi.org/10.3171/foc.2009.26.2.e12
- Cai, Z., Cash, K., Thompson, P. D., & Blumbergs, P. C. (2002). Accuracy of sampling methods in morphometric studies of human sural nerves. Journal of Clinical Neuroscience, 9(2), 181–186. https://doi.org/10.1054/jocn.2001.1040
- Christensen, M. B., & Tresco, P. A. (2015). Differences exist in the left and right sciatic nerves of naïve rats and cats. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 298(8), 1492–1501. https://doi.org/10.1002/ar.23161
- Chuang, T. H., Wilson, R. E., Love, J. M., Fisher, J. P., & Shah, S. B. (2013). A novel internal fixator device for peripheral nerve regeneration. Tissue Engineering Part C-Methods, 19(6), 427–437. https://doi.org/10.1089/ten.tec.2012.0021
- Deumens, R., Bozkurt, A., Meek, M. F., Marcus, M. A. E., Joosten, E. A. J., Weis, J., & Brook, G. A. (2010). Repairing injured peripheral nerves: Bridging the gap. Progress in Neurobiology, 92(3), 245–276. https://doi.org/10.1016/j.pneurobio.2010.10.002
- Foran, I., Vaz, K., Sikora-Klak, J., Ward, S. R., Hentzen, E. R., & Shah, S. B. (2016). Regional ulnar nerve strain following decompression and anterior subcutaneous transposition in patients with cubital tunnel syndrome. Journal of Hand Surgery. American Volume, 41(10), E343–E350. https://doi.org/10.1016/j.jhsa.2016.07.095
- Franze, K., & Guck, J. (2010). The biophysics of neuronal growth. Reports on Progress in Physics, 73(9), 094601. https://doi.org/10.1088/0034-4885/73/9/094601
- Galardi, G., Comi, G., Lozza, L., Marchettini, P., Novarina, M., Facchini, R., & Paronzini, A. (1990). Peripheral nerve damage during limb lengthening. Neurophysiology in five cases of bilateral tibial lengthening. The Journal of Bone and Joint Surgery. British Volume, 72(1), 121–124.
- Ganguly, A., McEwen, C., Troy, E. L., Colburn, R. W., Caggiano, A. O., Schallert, T. J., & Parry, T. J. (2017). Recovery of sensorimotor function following sciatic nerve injury across multiple rat strains. Journal of Neuroscience Methods, 275, 25–32. https://doi.org/10.1016/j.jneumeth.2016.10.018
- Grinsell, D., & Keating, C. P. (2014). Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. Biomed Research International., 2014, 1–13. https://doi.org/10.1155/2014/698256
- Hentz, V. R., Rosen, J. M., Xiao, S. J., McGill, K. C., & Abraham, G. (1993). The nerve gap dilemma: A comparison of nerves repaired end-to-end under tension with nerve grafts in a primate model. Journal of Hand Surgery. American Volume, 18A(3), 417–425. https://doi.org/10.1016/0363-5023(93)90084-g
- Howarth, H. M., Alaziz, T., Nicolds, B., O'Connor, S., & Shah, S. B. (2019). Redistribution of nerve strain enables end-to-end repair under tension without inhibiting nerve regeneration. Neural Regeneration Research, 14(7), 1280–1288. https://doi.org/10.4103/1673-5374.251338
- Ippolito, E., Peretti, G., Bellocci, M., Farsetti, P., Tudisco, C., Caterini, R., & Demartino, C. (1994). Histology and ultrastructure of arteries, veins, and peripheral nerves during limb lengthening. Clinical Orthopaedics and Related Research, (308), 54–62.
- Jonsson, S., Wiberg, R., McGrath, A. M., Novikov, L. N., Wiberg, M., Novikova, L. N., & Kingham, P. J. (2013). Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056484
- Kaplan, S., Geuna, S., Ronchi, G., Ulkay, M. B., & von Bartheld, C. S. (2010). Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study. Journal of Neuroscience Methods, 187(1), 90–99. https://doi.org/10.1016/j.jneumeth.2010.01.001
- Koller, R., Rab, M., Todoroff, B. P., Neumayer, C., Haslik, W., Stohr, H. G., & Frey, M. (1997). The influence of the graft length on the functional and morphological result after nerve grafting: An experimental study in rabbits. British Journal of Plastic Surgery, 50(8), 609–614. https://doi.org/10.1016/s0007-1226(97)90506-3
- Liebling, T. M., & Pournin, L. (2012). Voronoi diagrams and Delaunay triangulations: Ubiquitous siamese twins (pp. 419–431). ISMP: Documenta Mathematics.
- Love, J. M., Bober, B. G., Orozco, E., White, A. T., Bremner, S. N., Lovering, R. M., … Shah, S. B. (2017). mTOR regulates peripheral nerve response to tensile strain. Journal of Neurophysiology, 117(5), 2075–2084. https://doi.org/10.1152/jn.00257.2016
- Mackinnon, S. E., Dellon, A. L., & Obrien, J. P. (1991). Changes in nerve fiber numbers distal to a nerve repair in the rat sciatic nerve model. Muscle & Nerve, 14(11), 1116–1122. https://doi.org/10.1002/mus.880141113
- Maeda, T., Hori, S., Sasaki, S., & Maruo, S. (1999). Effects of tension at the site of coaptation on recovery of sciatic nerve function after neurorrhaphy: Evaluation by walking-track measurement, electrophysiology, histomorphometry, and electron probe X-ray microanalysis. Microsurgery, 19(4), 200–207. https://doi.org/10.1002/(sici)1098-2752(1999)19:4<200::aid-micr7>3.3.co;2-p
10.1002/(sici)1098?2752(1999)19:4<200::aid?micr7>3.3.co;2?p CAS PubMed Web of Science® Google Scholar
- McDonald, D. S., & Bell, M. S. (2010). Peripheral nerve gap repair facilitated by a dynamic tension device. The Canadian Journal of Plastic Surgery, 18(1), e17–e19.
- Meek, M. F., Coert, J. H., & Robinson, P. H. (2005). Poor results after nerve grafting in the upper extremity: Quo vadis? Microsurgery, 25(5), 396–402. https://doi.org/10.1002/micr.20137
- Millesi, H., Berger, A., & Meissl, G. (1972). Interfascicular nerve-grafting of median and ulnar nerves. Journal of Bone and Joint Surgery (American) Volume, A 54(4), 727–750. https://doi.org/10.2106/00004623-197254040-00004
- Muglia, U., Vita, G., Laura, R., Mammola, C. L., & Germana, G. (1997). Morphometric comparison between controlateral sciatic nerves in the male and female rabbit. Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C-Zentralblatt Fur Veterinarmedizin Reihe C, 26(2), 147–150. https://doi.org/10.1111/j.1439-0264.1997.tb00115.x
- Pfister, B. J., Gordon, T., Loverde, J. R., Kochar, A. S., Mackinnon, S. E., & Cullen, D. K. (2011). Biomedical engineering strategies for peripheral nerve repair. Surgical applications, state of the art, and future challenges., 39(2), 81–124. https://doi.org/10.1615/CritRevBiomedEng.v39.i2.20
10.1615/CritRevBiomedEng.v39.i2.20 Google Scholar
- Pfister, B. J., Iwata, A., Meaney, D. F., & Smith, D. H. (2004). Extreme stretch growth of integrated axons. Journal of Neuroscience, 24(36), 7978–7983. https://doi.org/10.1523/jneurosci.1974-04.2004
- Pratt, S. J. P., Iyer, S. R., Shah, S. B., & Lovering, R. M. (2018). Imaging analysis of the neuromuscular junction in dystrophic muscle. Duchenne Muscular Dystrophy: Methods and Protocols, 1687, 57–72. https://doi.org/10.1007/978-1-4939-7374-3_5
- Saijilafu, N. Y., Hara, Y., Yoshii, Y., & Ochiai, N. (2008). Simultaneous gradual lengthening of both proximal and distal nerve stumps for repair of peripheral nerve defect in rats. Muscle & Nerve, 38(5), 1474–1480. https://doi.org/10.1002/mus.21147
- Saijilafu, N. Y., Yamada, Y., Hara, Y., Ichimura, H., Yoshii, Y., & Ochiai, N. (2006). Repair of peripheral nerve defect with direct gradual lengthening of the proximal nerve stump in rats. Journal of Orthopaedic Research, 24(12), 2246–2253. https://doi.org/10.1002/jor.20280
- Saxod, R., Torch, S., Vila, A., Laurent, A., & Stoebner, P. (1985). The density of myelinated fibres is related to the fascicle diameter in human superficial peroneal nerve: Statistical study of 41 normal samples. Journal of the Neurological Sciences, 71(1), 49–64. https://doi.org/10.1016/0022-510x(85)90036-x
- Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293‑347. https://doi.org/10.1146/annurev.bioeng.5.011303.120731
- Sharula, H. Y., Nishiura, Y., Saijilafu, K. S., & Ochiai, N. (2010). Repair of the sciatic nerve defect with a direct gradual lengthening of proximal and distal nerve stumps in rabbits. Plastic and Reconstructive Surgery, 125(3), 846–854. https://doi.org/10.1097/PRS.0b013e3181ccdbd4
- Siemionow, M., & Brzezicki, G. (2009). Current techniques and concepts in peripheral nerve repair. Essays on Peripheral Nerve Repair and Regeneration, 87, 141–172. https://doi.org/10.1016/s0074-7742(09)87008-6
- Siemionow, M., & Sonmez, E. (2010). Peripheral nerve injuries. In Plastic and reconstructive surgery (pp. 523–538). London: Springer London.
10.1007/978-1-84882-513-0_37 Google Scholar
- Simpson, A. H., Gillingwater, T. H., Anderson, H., Cottrell, D., Sherman, D. L., Ribchester, R. R., & Brophy, P. J. (2013). Effect of limb lengthening on internodal length and conduction velocity of peripheral nerve. Journal of Neuroscience, 33(10), 4536–4539. https://doi.org/10.1523/jneurosci.4176-12.2013
- Song, Y., Li, D., Farrelly, O., Miles, L., Li, F., Kim, S. E., … Jan, Y. N. (2019). The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron, 102(2), 373–389.e376. https://doi.org/10.1016/j.neuron.2019.01.050
- Sunderland, I. R. P., Brenner, M. J., Singham, J., Rickman, S. R., Hunter, D. A., & Mackinnon, S. E. (2004). Effect of tension on nerve regeneration in rat sciatic nerve transection model. Annals of Plastic Surgery, 53(4), 382–387. https://doi.org/10.1097/01.sap.0000125502.63302.47
- Tang, D. B., & Ebbesson, S. O. (1972). Comparison of a systematic sampling method with complete random sampling for estimating total numbers of nerve fibers. Anatomical Record, 174(4), 495–502. https://doi.org/10.1002/ar.1091740408
- Terzis, J., Faibisoff, B., & Williams, H. B. (1975). Nerve gap: Suture under tension vs. graft. Plastic and Reconstructive Surgery, 56(2), 166–170. https://doi.org/10.1097/00006534-197508000-00008
- Weekley, H., Nikolaou, S., Hu, L. J., Eismann, E., Wylie, C., & Cornwall, R. (2012). The effects of denervation, reinnervation, and muscle imbalance on functional muscle length and elbow flexion contracture following neonatal brachial plexus injury. Journal of Orthopaedic Research, 30(8), 1335–1342. https://doi.org/10.1002/jor.22061
- Wong, A. Y. C., & Scott, J. J. A. (1991). Functional recovery following direct or graft repair of nerve gaps in the rat. Experimental Neurology, 114(3), 364–366. https://doi.org/10.1016/0014-4886(91)90162-6
- Wood, M. D., Kemp, S. W. P., Weber, C., Borschel, G. H., & Gordon, T. (2011). Outcome measures of peripheral nerve regeneration. Annals of Anatomy-Anatomischer Anzeiger, 193(4), 321–333. https://doi.org/10.1016/j.aanat.2011.04.008
- Yousef, M. A. A., Dionigi, P., Marconi, S., Calligaro, A., Cornaglia, A. I., Alfonsi, E., & Auricchio, F. (2015). Successful reconstruction of nerve defects using distraction neurogenesis with a new experimental device. Basic and Clinical Neuroscience, 6(4), 253–264.