Bovine pericardium membrane as new tool for mesenchymal stem cells commitment
Letizia Ferroni
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorChiara Gardin
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorGloria Bellin
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorVincenzo Vindigni
Plastic Clinic Surgery, University of Padova, Padova, Italy
Search for more papers by this authorCarmen Mortellaro
Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
Search for more papers by this authorCorresponding Author
Barbara Zavan
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Correspondence
Barbara Zavan, GVM Care & Research, Maria Cecilia Hospital, Cotignola 48033 (RA), Italy.
Email: [email protected]
Search for more papers by this authorLetizia Ferroni
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorChiara Gardin
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorGloria Bellin
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Search for more papers by this authorVincenzo Vindigni
Plastic Clinic Surgery, University of Padova, Padova, Italy
Search for more papers by this authorCarmen Mortellaro
Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
Search for more papers by this authorCorresponding Author
Barbara Zavan
GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
Department of Medical Sciences, University of Ferrara, Ferrara, Italy
Correspondence
Barbara Zavan, GVM Care & Research, Maria Cecilia Hospital, Cotignola 48033 (RA), Italy.
Email: [email protected]
Search for more papers by this authorAbstract
Acellular matrices are widespread biomaterials used in surgical practice as tissue reinforcement and anatomical support to favor tissue regeneration. It is clear that a fundamental role in the regeneration of tissue is played by cell–material interaction. In this work, the interaction between a bovine pericardium membrane and human adult stem cells was investigated by microscopy analysis and gene expression analysis. Parallel cell cultures were prepared on the pericardium membrane or tissue culture plate. They were incubated in basal growth medium or in adipogenic differentiation medium to perform experiments on the seventh and the 14th day of culture. Results demonstrated that the membrane allows cell viability, adhesion, and proliferation of human stem cells. During adipogenic commitment on the membrane, the accumulation of cytoplasmatic lipid droplets and the expression of adipogenic gene PPARG, CEBPA, GLUT4, FABP4, and ADIPOQ were detected. Concurrently, a downregulation of mesenchymal stem cell gene CD29, CD90, and CD105 was detected. In basal medium, the adipogenic gene expression was upregulated, whereas the mesenchymal markers were indifferently expressed. These findings suggest that the bovine pericardium membrane is a biocompatible matrix and that their rough surface allows cell adhesion, spreading, and proliferation. The surface morphology activates mechanochemical signals that stimulate the adipogenic commitment of stem cells in basal medium and potentiate their commitment in adipogenic differentiation medium.
CONFLICT OF INTEREST
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
REFERENCES
- Atashi, F., Modarressi, A., & Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: A review. Stem cells and development, 24, 1150–1163. https://doi.org/10.1089/scd.2014.0484
- Aulino, P., Costa, A., Chiaravalloti, E., Perniconi, B., Adamo, S., Coletti, D., … Teodori, L. (2015). Muscle extracellular matrix scaffold is a multipotent environment. International Journal of Medical Sciences, 12, 336–340. https://doi.org/10.7150/ijms.10761
- Banik, B. L., Riley, T. R., Platt, C. J., & Brown, J. L. (2016). Human mesenchymal stem cell morphology and migration on microtextured titanium. Frontiers in Bioengineering and Biotechnology, 4, 41. https://doi.org/10.3389/fbioe.2016.00041
- Bressan, E., Botticelli, D., Sivolella, S., Bengazi, F., Guazzo, R., Sbricoli, L., … Zavan, B. (2015). Adipose-derived stem cells as a tool for dental implant osseointegration: An experimental study in the dog. International Journal of Molecular and Cellular Medicine, 4, 197–208.
- Bressan, E., Carraro, A., Ferroni, L., Gardin, C., Sbricoli, L., Guazzo, R., … Zavan, B. (2013). Nanotechnology to drive stem cell commitment. Nanomedicine (London), 8, 469–486. https://doi.org/10.2217/nnm.13.12 Review
- Bressan, E.; Ferroni, L.; Gardin, C.; Rigo, C.; Stocchero, M.; Vindigni, V.; Cairns, W.; Zavan, B. (2013) Silver nanoparticles and mitochondrial interaction. International Journal of Dentistry, 2013, 312747. https://doi.org/10.1155/2013/312747, 1, 8.
10.1155/2013/312747 Google Scholar
- Brunello, G., Brun, P., Gardin, C., Ferroni, L., Bressan, E., Meneghello, R., … Sivolella, S. (2018). Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study. PLoS One, 13, e0199591. https://doi.org/10.1371/journal.pone.0199591
- Buck, D. W. 2nd, Heyer, K., Wayne, J. D., Yeldandi, A., & Kim, J. Y. (2009). Diagnostic dilemma: Acellular dermis mimicking a breast mass after immediate tissue expander breast reconstruction. Plastic and Reconstructive Surgery, 124, 174e–176e. https://doi.org/10.1097/PRS.0b013e3181a83c69
- Caballero, A., Sulejmani, F., Martin, C., Pham, T., & Sun, W. (2017). Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. Journal of the mechanical behavior of biomedical materials, 75, 486–494. https://doi.org/10.1016/j.jmbbm.2017.08.013
- Casadei, A.; Epis, R.; Ferroni, L.; Tocco, I.; Gardin, C.; Bressan, E.; Sivolella, S.; Vindigni, V.; Pinton, P.; Mucci, G.; Zavan, B. (2012) Adipose tissue regeneration: A state of the art. Journal of Biomedicine and Biotechnology, 2012, 462543. https://doi.org/10.1155/2012/462543, 1, 12.
- Chiarella, E., Aloisio, A., Codispoti, B., Nappo, G., Scicchitano, S., Lucchino, V., … Morrone, G. (2018). ZNF521 Has an inhibitory effect on the adipogenic differentiation of human adipose-derived mesenchymal stem cells. Stem Cell Reviews and Reports., 14, 901–914. https://doi.org/10.1007/s12015-018-9830-0
- Chun, Y. S., Verma, K., Rosen, H., Lipsitz, S., Morris, D., Kenney, P., & Eriksson, E. (2010). Implant-based breast reconstruction using acellular dermal matrix and the risk of postoperative complications. Plastic and Reconstructive Surgery, 125, 429–436. https://doi.org/10.1097/PRS.0b013e3181c82d90
- de Blacam, C., Momoh, A. O., Colakoglu, S., Slavin, S. A., Tobias, A. M., & Lee, B. T. (2012). Cost analysis of implant-based breast reconstruction with acellular dermal matrix. Annals of Plastic Surgery, 69, 516–520. https://doi.org/10.1097/SAP.0b013e318217fb21
- Ferroni, L., Gardin, C., Dolkart, O., Salai, M., Barak, S., Piattelli, A., … Zavan, B. (2018). Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: An in-vitro study. Scientific Report, 8, 5108. https://doi.org/10.1038/s41598-018-23499-9
- Ferroni, L., Gardin, C., Sivolella, S., Brunello, G., Berengo, M., Piattelli, A., … Zavan, B. (2015). A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. International Journal of Molecular Sciences, 16, 4666–4681. https://doi.org/10.3390/ijms16034666
- Ferroni, L., Gardin, C., Tocco, I., Epis, R., Casadei, A., Vindigni, V., … Zavan, B. (2013). Potential for neural differentiation of mesenchymal stem cells. Advances in Biochemical Engeneering/Biotechnology, 129, 89–115. https://doi.org/10.1007/10_2012_152
- Ferroni, L., Tocco, I., De Pieri, A., Menarin, M., Fermi, E., Piattelli, A., … Zavan, B. (2016). Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sciences, 152, 44–51. https://doi.org/10.1016/j.lfs.2016.03.020
- Figallo, E., Flaibani, M., Zavan, B., Abatangelo, G., & Elvassore, N. (2007). Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnology Progress, 23, 210–216. https://doi.org/10.1021/bp0602092
- Gardin, C., Bressan, E., Ferroni, L., Nalesso, E., Vindigni, V., Stellini, E., … Zavan, B. (2012). In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: Novel strategies to increase the successful engraftment of tissue-engineered bone grafts. Stem Cells and Development, 21, 767–777. https://doi.org/10.1089/scd.2011.0147
- Gardin, C., Ferroni, L., Bellin, G., Rubini, G., Barosio, S., & Zavan, B. (2018). Therapeutic potential of autologous adipose-derived stem cells for the treatment of liver disease. International Journal of Molecular Sciences, 19(12), pii: E4064. https://doi.org/10.3390/ijms19124064
- Gardin, C., Ferroni, L., Bressan, E., Calvo-Guirado, J. L., Degidi, M., Piattelli, A., & Zavan, B. (2014). Adult stem cells properties in terms of commitment, aging and biological safety of grit-blasted and Acid-etched ti dental implants surfaces. International Journal of Molecuolar and Cellular Medicine, 3, 225–236.
- Gardin, C., Ricci, S., Ferroni, L., Guazzo, R., Sbricoli, L., De Benedictis, G., … Zavan, B. (2015). Decellularization and delipidation protocols of bovine bone and pericardium for bone grafting and guided bone regeneration procedures. PLoS One, 10, e0132344. https://doi.org/10.1371/journal.pone.0132344
- Gubitosi, A., Docimo, G., Parmeggiani, D., Pirozzi, R., Vitiello, C., Schettino, P., … Docimo, L. (2014). Acellular bovine pericardium dermal matrix in immediate breast reconstruction after skin sparing mastectomy. International Journal of Surgery, 12(Suppl 1), S205–S208. https://doi.org/10.1016/j.ijsu.2014.05.007
- Ivanovska, I. L., Swift, J., Spinler, K., Dingal, D., Cho, S., & Discher, D. E. (2017). Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Molecular biology of the cell, 28, 2010–2022. https://doi.org/10.1091/mbc.e17-01-0010
- Jansen, L. A., & Macadam, S. A. (2011). The use of AlloDerm in postmastectomy alloplastic breast reconstruction: Part II. A cost analysis. Plastic and Reconstructive Surgery, 127, 2245–2254. https://doi.org/10.1097/PRS.0b013e3182131c6b
- Jara, M., Malinowski, M., Bahra, M., Stockmannn, M., Schulz, A., Pratschke, J., & Puhl, G. (2015). Bovine pericardium for portal vein reconstruction in abdominal surgery: A surgical guide and first experiences in a single center. Digestive surgery, 32, 135–141. https://doi.org/10.1159/000370008
- Lauterio, A., De Carlis, R., Di Sandro, S., Ferla, F., Giacomoni, A., Rossetti, O., & De Carlis, L. (2017). Bovine pericardium for multiple artery reconstruction in kidney transplantation. Transplant International, 30, 1292–1293. https://doi.org/10.1111/tri.13039
- Limpert, J. N., Desai, A. R., Kumpf, A. L., Fallucco, M. A., & Aridge, D. L. (2009). Repair of abdominal wall defects with bovine pericardium. The American Journal of Surgery, 198, e60–e65. https://doi.org/10.1016/j.amjsurg.2009.01.027
- Olsen, S. B., Mcquinn, W. C., & Feliciano, P. (2016). Results of carotid endarterectomy using bovine pericardium patch closure, with a review of pertinent literature. The American surgeon, 82, 221–226.
- Paduano, F., Marrelli, M., Alom, N., Amer, M., White, L. J., Shakesheff, K. M., & Tatullo, M. (2017). Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. Journal of biomaterials science. Polymer edition, 28, 730–748. https://doi.org/10.1080/09205063.2017.1301770
- Paduano, F., Marrelli, M., Amantea, M., Rengo, C., Rengo, S., Goldberg, M., … Tatullo, M. (2017). Adipose tissue as a strategic source of mesenchymal stem cells in bone regeneration: A topical review on the most promising craniomaxillofacial applications. International journal of molecular sciences, 18, pii: E2140. https://doi.org/10.3390/ijms18102140
- Paduano, F., Marrelli, M., Palmieri, F., & Tatullo, M. (2016). CD146 Expression influences periapical cyst mesenchymal stem cell properties. Stem cell reviews, 12, 592–603. https://doi.org/10.1007/s12015-016-9674-4
- Pak, J.; Lee, J.H.; Kartolo, W.A.; Lee, S.H. (2016) Cartilage regeneration in human with adipose tissue-derived stem cells: Current status in clinical implications. BioMed research international, 2016, 4702674. https://doi.org/10.1155/2016/4702674, 1, 12.
- Parikh, R. P., Pappas-Politis, E., & Smith, P. D. (2012). Acellular dermal matrix masking detection of recurrent breast carcinoma: A novel complication. Aesthetic Plastic Surgery, 36, 149–152. https://doi.org/10.1007/s00266-011-9744-6
- Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. https://doi.org/10.1093/nar/29.9.e45
- Pulitanó, C., Crawford, M., Ho, P., Gallagher, J., Joseph, D., Stephen, M., & Sandroussi, C. (2013). The use of biological grafts for reconstruction of the inferior vena cava is a safe and valid alternative: Results in 32 patients in a single institution. HPB: The official journal of the International Hepato Pancreato Biliary Association, 15, 628–632. https://doi.org/10.1111/hpb.12029
- Semprini, G., Cattin, F., De Biasio, F., Cedolini, C., & Parodi, P. C. (2012). The bovine pericardial patch in breast reconstruction: A case report. Il Giornale di Chirurgia, 33, 392–394.
- Sivolella, S., Brunello, G., Ferroni, L., Berengo, M., Meneghello, R., Savio, G., … Zavan, B. (2015). A novel in vitro technique for assessing dental implant osseointegration. Tissue Engineering Part C Methods, 22, 132–141. https://doi.org/10.1089/ten.tec.2015.0158
- Spear, S. L., Seruya, M., Clemens, M. W., Teitelbaum, S., & Nahabedian, M. Y. (2011). Acellular dermal matrix for the treatment and prevention of implant-associated breast deformities. Plastic and Reconstruction Surgery, 127, 1047–1058. https://doi.org/10.1097/PRS.0b013e31820436af.
- Sterio, T. W., Katancik, J. A., Blanchard, S. B., Xenoudi, P., & Mealey, B. L. (2013). A prospective, multicenter study of bovine pericardium membrane with cancellous particulate allograft for localized alveolar ridge augmentation. The International journal of periodontics & restorative dentistry, 33, 499–507. https://doi.org/10.11607/prd.1704
- Tsuji, W., Rubin, J. P., & Marra, K. G. (2014). Adipose-derived stem cells: Implications in tissue regeneration. World journal of stem cells, 6, 312–321. https://doi.org/10.4252/wjsc.v6.i3.312
- Umashankar, P. R., Sabareeswaran, A., & Shenoy, S. J. (2017). Long-term healing of mildly cross-linked decellularized bovine pericardial aortic patch. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 2145–2152. https://doi.org/10.1002/jbm.b.33755
- Vardanian, A. J., Clayton, J. L., Roostaeian, J., Shirvanian, V., Da Lio, A., Lipa, J. E., … Festekjian, J. H. (2011). Comparison of implant-based immediate breast reconstruction with and without acellular dermal matrix. Plastic and Reconstructive Surgery, 128, 403e–410e. https://doi.org/10.1097/PRS.0b013e31822b6637
- Zavan, B., Giorgi, C., Bagnara, G. P., Vindigni, V., Abatangelo, G., & Cortivo, R. (2007). Osteogenic and chondrogenic differentiation: Comparison of human and rat bone marrow mesenchymal stem cells cultured into polymeric scaffolds. European Journal of Histochemistry, 51(Suppl 1), 1–8.