Electrochemical Difunctionalization of Alkenes
Yin Zhang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorZi-Long Zhou
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin-Heng Li
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Tao Li
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorYin Zhang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorZi-Long Zhou
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jin-Heng Li
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan-Tao Li
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorAbstract
Owing to their wide utilizations in synthesis and their products prevalence in numerous natural products, pharmaceuticals and functional materials, the alkene difunctionalization methods for the selective transformations of the olefins are important and have attracted much attention form the synthetic chemists. Among them, the electrochemical alkene difunctionalization reaction is particularly promising and has becoming a potent and sustainable tool for the selective transformations of alkenes into vicinal difunctionalized structures in organic synthesis through simultaneous incorporation of two functional groups. Herein, we summarize recent progress in the electrochemical alkene difunctionalization reactions according to the alkene difunctionalization types as well as the category of the radicals over the past five years. By selecting the remarkable synthetic examples, we have elaborately discussed the substrate scope and the mechanisms for the electrochemical olefin difunctionalization reaction.
References
- 1
- 1aR. Davarnejad, Alkenes-Recent Advances, New Perspectives and Applications, IntechOpen, 2021, pp. 1–130;
10.5772/intechopen.94671 Google Scholar
- 1bJ.-X. Xu, Y. Yuan, X.-F. Wu, Coord. Chem. Rev. 2023, 477, 214947.
- 2For selected reviews, see:
- 2aL. M. Surhone, M. T. Tennoe, S. F. Henssonow, Vicinal Difunctionalization, Betascript Publishing, 2010, pp. 1–80;
- 2bR.-J. Song, Y. Liu, Y.-X. Xie, J.-H. Li, Synthesis 2015, 47, 1195–1209;
- 2cJ.-R. Chen, X.-Y. Yu, W.-J. Xiao, Synthesis 2015, 47, 604–629;
- 2dG. Yin, X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 2413–2423;
- 2eR. Giri, S. KC, J. Org. Chem. 2018, 83, 3013–3022;
- 2fR. K. Dhungana, S. KC, P. Basnet, R. Giri, Chem. Rec. 2018, 18, 1314–1340;
- 2gH. Mei, Z. Yin, J. Liu, H. Sun, J. Han, Chin. J. Chem. 2019, 37, 292–301;
- 2hJ. Lin, R.-J. Song, M. Hu, J.-H. Li, Chem. Rec. 2019, 19, 440–451;
- 2iY.-C. Wu, Y.-T. Xiao, Y.-Z. Yang, R.-J. Song, J.-H. Li, ChemCatChem 2020, 12, 5312–5329;
- 2jY. Li, D. Wu, H.-G. Cheng, G. Yin, Angew. Chem. 2020, 132, 8066–8079;
10.1002/ange.201913382 Google ScholarAngew. Chem. Int. Ed. 2020, 59, 7990–8003;
- 2kZ.-L. Li, G.-C. Fang, Q.-S. Gu, X.-Y. Liu, Chem. Soc. Rev. 2020, 49, 32–48;
- 2lY. Wang, Y. Bao, M. Tang, Z. Ye, Z. Yuan, G. Zhu, Chem. Commun. 2022, 58, 3847–3864;
- 2mN. Nan, S. Wu, J. Qin, J. Li, Chin. J. Org. Chem. 2023, 43, 3414–3453;
- 2nJ.-H. Qin, N. Nan, J.-H. Li, Synthesis 2023, 55, 2843–2859;
- 2oM. Mohar, S. Ghosh, A. Hajra, Chem. Rec. 2023, 23, e202300121;
- 2pF. Lian, J.-L. Li, K. Xu, Org. Biomol. Chem. 2024, 22, 4390–4419;
- 2qZ.-L. Zhou, Y. Zhang, P.-Z. Cui, J.-H. Li, Chem. Eur. J. 2024, 30, e202402458.
- 3For selected reviews, see:
- 3aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
- 3bY. Yuan, A. Lei, Acc. Chem. Res. 2019, 52, 3309–3324;
- 3cP. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339–3350;
- 3dJ. L. Roeckl, D. Pollok, R. Franke, S. R. Waldvogel, Acc. Chem. Res. 2020, 53, 45–61;
- 3eK.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53, 300–310;
- 3fJ. C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 2020, 53, 547–560;
- 3gC. Zhu, N. W. J. Ang, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Cent. Sci. 2021, 7, 415–431;
- 3hY. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 2021, 50, 10058–10086;
- 3iZ. Wang, C. Ma, P. Fang, H. Xu, T. Mei, Acta Chimica Sinica 2022, 80, 1115–1134;
- 3jM.-J. Luo, Q. Xiao, J.-H. Li, Chem. Soc. Rev. 2022, 51, 7206–7237;
- 3kY. Li, L. Wen, W. Guo, Chem. Soc. Rev. 2023, 52, 1168–1188;
- 3lZ. Tan, H. Zhang, K. Xu, C. Zeng, Sci. China Chem. 2024, 67, 450–470;
- 3mR. Gao, L. Wen, W. Guo, Chin. J. Org. Chem. 2024, 44, 892–902;
- 3nX.-Q. Xie, W. Zhou, R. Yang, X.-R. Song, M.-J. Luo, Q. Xiao, Org. Chem. Front. 2024, 11, 4318–4342.
- 4
- 4aJ.-C. Moutet, G. Reverdy, Tetrahedron Lett. 1979, 20, 2389–2392;
10.1016/S0040-4039(01)86300-0 Google Scholar
- 4bJ. P. Barham, B. Konig, Angew. Chem. 2020, 132, 11828–11844;
10.1002/ange.201913767 Google ScholarAngew. Chem. Int. Ed. 2020, 59, 11732–11747;
- 4cS. Wu, J. Kaur, T. A. Karl, X. Tian, J. P. Barham, Angew. Chem. 2022, 134, e202107811;
10.1002/ange.202107811 Google ScholarAngew. Chem. Int. Ed. 2022, 61, e202107811;
- 4dH. Huang, K. A. Steiniger, T. H. Lambert, J. Am. Chem. Soc. 2022, 144, 12567–12583;
- 4eH. Yan, Z. W. Hou, H.-C. Xu, Angew. Chem. 2019, 131, 4640–4643;
10.1002/ange.201814488 Google ScholarAngew. Chem. Int. Ed. 2019, 58.
- 5L. Zou, S. Xiang, R. Sun, Q. Lu, Nat. Commun. 2023, 14, 7992.
- 6Y.-Z. Wang, B. Sun, X.-Y. Zhu, Y.-C. Gu, C. Ma, T.-S. Mei, J. Am. Chem. Soc. 2023, 145, 23910–23917.
- 7L. Wang, X. Huo, X. He, L. Ackermann, D. Wang, Green Chem. 2024, 26, 8315–8322.
- 8X.-L. Lai, H.-C. Xu, J. Am. Chem. Soc. 2023, 145, 18753–18759.
- 9H. He, Q. Wan, Z.-W. Hou, Q. Zhou, L. Wang, Org. Lett. 2023, 25, 7014–7019.
- 10L. Lu, Y. Wang, W. Zhang, W. Zhang, K. A. See, S. Lin, J. Am. Chem. Soc. 2023, 145, 22298–22304.
- 11W. Chen, L. Yu, Y. Pan, S. Ni, Y. Wang, Org. Lett. 2023, 25, 9225–9230.
- 12W. Yu, S. Wang, M. He, Z. Jiang, Y. Yu, J. Lan, J. Luo, P. Wang, X. Qi, T. Wang, A. Lei, Angew. Chem. 2023, 135, e202219166;
10.1002/ange.202219166 Google ScholarAngew. Chem. Int. Ed. 2023, 62, e202219166.
- 13L. Zeng, J.-H. Qin, G.-F. Lv, M. Hu, Q. Sun, X.-H. Ouyang, D.-L. He, J.-H. Li, Chin. J. Chem. 2023, 41, 1921–1930.
- 14
- 14aY.-Y. Ma, D.-C. Zhang, Z.-Y. Yan, M.-F. Wang, C.-L. Bian, X.-L. Gao, E. E. Bunel, A.-W. Lei, Org. Lett. 2015, 17, 2174–2177;
- 14bK. R. Babu, S.-W. Chen, Y.-J. Li, H.-L. Bao, Chin. J. Org. Chem. 2017, 37, 1160–1164 ;
- 14cJ.-H. Qin, M.-J. Luo, D.-L. An, J.-H. Li, Angew. Chem. 2021, 133, 1889–1896;
10.1002/ange.202011657 Google ScholarAngew. Chem. Int. Ed. 2021, 60, 1861–1868.
- 15N. Fu, Y. Shen, A. R. Allen, L. Song, A. Ozaki, S. Lin, ACS Catal. 2019, 9, 746–754.
- 16T.-T. Zhang, M.-J. Luo, Y. Li, R.-J. Song, J.-H. Li, Org. Lett. 2022, 22, 7250–7254.
10.1021/acs.orglett.0c02582 Google Scholar
- 17Y. Zhao, X. Li, S. L. Homölle, B. Wang, L. Ackermann, Chem. Sci. 2024, 15, 1117–1122.
- 18K. Liang, Q. Zhang, C. Guo, Sci. Adv. 2022, 8, eadd7134.
- 19S. Schmid, S. Wu, I. Dey, M. Domański, X. Tian, J. P. Barham, ACS Catal. 2024, 14, 9648–9654.
- 20A. C. Seastram, M. D. Hareram, T. M. B. Knight, L. C. Morrill, Chem. Commun. 2022, 58, 8658–8661.
- 21Y.-T. Zheng, H.-C. Xu, Angew. Chem. 2024, 136, e202313273;
10.1002/ange.202313273 Google ScholarAngew. Chem. Int. Ed. 2024, 63, e202313273.
- 22K. Zhou, C. Lv, N. Fu, Eur. J. Org. Chem. 2023, 26, e202200977.
- 23C. Wan, R.-J. Song, J.-H. Li, Org. Lett. 2019, 21, 2800–2803.
- 24X. Sun, H.-X. Ma, T.-S. Mei, P. Fang, Y. Hu, Org. Lett. 2019, 21, 3167–3171.
- 25P. Zhou, K. Niu, H. Song, Y. Liu, Q. Wang, Green Chem. 2022, 24, 5760–5763.
- 26J. Liu, J. Xu, H. Mei, J. Han, Green Chem. 2022, 24, 6113–6118.
- 27J. Ke, W. Liu, X. Zhu, X. Tan, C. He, Angew. Chem. 2021, 133, 8826–8831;
10.1002/ange.202016620 Google ScholarAngew. Chem. Int. Ed. 2021, 60, 8744–8749.
- 28X. Zhang, T. Cui, X. Zhao, P. Liu, P. Sun, Angew. Chem. 2020, 132, 3493–3497;
10.1002/ange.201913332 Google ScholarAngew. Chem. Int. Ed. 2020, 59, 3465–3469.
- 29J.-L. Wan, J.-M. Huang, Org. Lett. 2022, 24, 8914–8919.
- 30B. Song, P. Gao, B. Hu, C. Zhang, J. Org. Chem. 2024, 89, 6951–6959.
- 31Y. Yu, X.-B. Zhu, Y. Yuan, K.-Y. Ye, Chem. Sci. 2022, 13, 13851–13856.
- 32C.-Y. Cai, Y.-T. Zheng, J.-F. Li, H.-C. Xu, J. Am. Chem. Soc. 2022, 144, 11980–11985.
- 33Z.-H. Ye, R.-J. Zhu, F. Wang, H.-B. Jiang, F.-Z. Zhang, Org. Lett. 2021, 23, 8240–8245.