Telluride-Based Materials: A Promising Route for High Performance Supercapacitors
Abdul Jabbar Khan
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorMuhammad Sajjad
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorShaukat Khan
College of Engineering, Dhofar University, Salalah, 211, Sultanate of Oman
Search for more papers by this authorMuhammad Khan
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800 Turkey
Search for more papers by this authorAbdul Mateen
Department of Physics, Beijing Normal University, Beijing, 100084 P. R. China
Search for more papers by this authorSyed Shaheen Shah
Graduate School of Engineering, Kyoto University, Kyoto, 615-8520 Japan
Search for more papers by this authorNuman Arshid
School of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Malaysia
Search for more papers by this authorLiang He
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZeyu Ma
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Ling Gao
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorCorresponding Author
Guowei Zhao
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorAbdul Jabbar Khan
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorMuhammad Sajjad
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 China
Search for more papers by this authorShaukat Khan
College of Engineering, Dhofar University, Salalah, 211, Sultanate of Oman
Search for more papers by this authorMuhammad Khan
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800 Turkey
Search for more papers by this authorAbdul Mateen
Department of Physics, Beijing Normal University, Beijing, 100084 P. R. China
Search for more papers by this authorSyed Shaheen Shah
Graduate School of Engineering, Kyoto University, Kyoto, 615-8520 Japan
Search for more papers by this authorNuman Arshid
School of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Malaysia
Search for more papers by this authorLiang He
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZeyu Ma
School of Mechanical Engineering, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Ling Gao
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorCorresponding Author
Guowei Zhao
College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000 China
Search for more papers by this authorAbstract
As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.
References
- 1I. Khan, F. Hou, M. Irfan, A. Zakari, H. P. Le, Renew. Sustain. Energy Rev. 2021, 146, 111157.
- 2A. Joshi, V. Shah, P. Mohapatra, S. Kumar, R. K. Joshi, M. Kathe, L. Qin, A. Tong, L.-S. Fan, Adv. Appl. Energy 2021, 3, 100044.
- 3S. Yetiman, S. Karagoz, F. Kilic Dokan, M. S. Onses, E. Yilmaz, E. Sahmetlioglu, ACS Omega 2022, 7, 44878–44891.
- 4J. B. Goodenough, E. Science, Energy Environ. Sci. 2014, 7, 14–18.
- 5J. J. Siirola, Curr. Opin. Chem. Eng. 2014, 5, 96–100.
- 6Y. Zeng, M. Wang, W. He, P. Fang, M. Wu, Y. Tong, M. Chen, X. Lu, Chem. Sci. 2019, 10, 3602–3607.
- 7M. S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S. S. A. Shah, W. Han, Small 2022, 18, 2201989.
- 8A. Mateen, M. S. Javed, S. Khan, A. Saleem, M. K. Majeed, A. J. Khan, M. F. Tahir, M. A. Ahmad, M. A. Assiri, K.-Q. Peng, J. Energy Storage 2022, 49, 104150.
- 9M. S. Javed, A. Mateen, I. Hussain, A. Ahmad, M. Mubashir, S. Khan, M. A. Assiri, S. M. Eldin, S. S. A. Shah, W. Han, Energy Storage Mater. 2022, 53, 827–872.
- 10M. S. Javed, A. Mateen, I. Hussain, S. Ali, S. Asim, A. Ahmad, E. tag Eldin, M. A. Bajaber, T. Najam, W. Han, Chem. Eng. J. 2023, 452, 139455.
- 11M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245–4270.
- 12G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797–828.
- 13M. S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S. S. A. Shah, W. Han, Small 2022, 18, 2201989.
- 14B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928–935.
- 15F. Ren, Z. Zhang, Z. Liang, Y. Shen, X. Wang, Q. Chen, Y. Du, J. Colloid Interface Sci. 2022, 616, 316–325.
- 16J. Jin, J. Zhao, S. Shen, J. Yu, S. Cheng, B. Pan, Q. Che, Nanotechnology 2020, 31, 205707.
- 17M. M. Rahman, The Chemical Record 2023, e202300183.
- 18F. Akhtar, M. H. Rehmani, Reviews, Renew. Sustain. Energy Rev. 2015, 45, 769–784.
- 19H. Fan, P. Mao, H. Sun, Y. Wang, S. S. Mofarah, P. Koshy, H. Arandiyan, Z. Wang, Y. Liu, Z. Shao, Mater. Horiz. 2022, 9, 524–546.
- 20G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797–828.
- 21M. Winter, R. J. Brodd, J. Chem. Rev. 2004, 104, 4245–4270.
- 22M. S. Javed, X. Zhang, S. Ali, A. Mateen, M. Idrees, M. Sajjad, S. Batool, A. Ahmad, M. Imran, T. Najam, W. Han, Nano Energy 2022, 101, 107624.
- 23Q. Abbas, A. Mateen, S. H. Siyal, N. U. Hassan, A. A. Alothman, M. Ouladsmane, S. M. Eldin, M. Z. Ansari, M. S. Javed, Chemosphere 2023, 313, 137421.
- 24A. Das, S. Deshagani, P. Ghosal, M. Deepa, Appl. Mater. Today 2020, 19, 100592.
- 25M. Ahmad, I. Hussain, T. Nawaz, Y. Li, X. Chen, S. Ali, M. Imran, X. Ma, K. Zhang, J. Power Sources 2022, 534, 231414.
- 26A. J. Khan, A. Khan, M. S. Javed, M. Arshad, S. Asim, M. Khalid, S. H. Siyal, S. Hussain, M. Hanif, Z. Liu, Ceram. Int. 2020, 46, 19499–19505.
- 27A. Mateen, M. Z. Ansari, I. Hussain, S. M. Eldin, M. D. Albaqami, A. A. A. Bahajjaj, M. S. Javed, K.-Q. Peng, Compos. Commun. 2023, 38, 101493.
- 28S. Yetiman, H. Peçenek, F. K. Dokan, M. S. Onses, E. Yılmaz, E. Sahmetlioglu, J. Energy Storage 2022, 49, 104103.
- 29T. Cao, X.-L. Shi, M. Li, B. Hu, W. Chen, W.-D. Liu, W. Lyu, J. MacLeod, Z.-G. Chen, eScience 2023, 3, 100122.
- 30A. J. Khan, M. S. Javed, M. Hanif, Y. Abbas, X. Liao, G. Ahmed, M. Saleem, S. Yun, Z. Liu, Ceram. Int. 2020, 46, 3124–3131.
- 31T. Kshetri, T. I. Singh, Y. S. Lee, D. D. Khumujam, N. H. Kim, J. H. Lee, Composites Part B 2021, 211, 108624.
- 32N. Y. W. Zaw, S. Jo, J. Park, N. Kitchamsetti, N. Jayababu, D. Kim, Appl. Clay Sci. 2022, 225, 106539.
- 33M. S. Javed, A. J. Khan, M. Hanif, M. T. Nazir, S. Hussain, M. Saleem, R. Raza, S. Yun, Z. Liu, Int. J. Hydrogen Energ. 2021, 46, 9976–9987.
- 34C. Liu, F. Li, L.-P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28–E62.
- 35R. B. Rakhi, W. Chen, D. Cha, H. N. Alshareef, Adv. Energy Mater. 2012, 2, 381–389.
- 36M. I. Khan, M. Zubair, N. Bibi, F. Aziz, A. Mateen, H. Ali, P. Ahmad, Y. Khan, M. K. Tufail, A. Hassan, ChemistrySelect 2021, 6, 13301–13308.
- 37Q. Abbas, S. H. Siyal, A. Mateen, N. U. Hassan, A. Idrees, Z. U. Rehman, E. M. T. E. Din, M. A. Bajaber, M. S. Javed, Materials 2022, 15, 4499.
- 38N. S. Lopa, M. K. Akbari, S. Zhuiykov, Electrochim. Acta 2022, 434, 141322.
- 39D. Khalafallah, W. Huang, M. Zhi, Z. Hong, Energy Environ. Mater. 2022, e12528.
- 40A. Indra, T. Song, U. Paik, Adv. Mater. 2018, 30, 1705146.
- 41H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326.
- 42R. B. Rakhi, D. Cha, W. Chen, H. N. Alshareef, The J. Phys. Chem. C 2011, 115, 14392–14399.
- 43D. S. Su, R. Schlögl, ChemSusChem: Chemistry Sustainability Energy Materials 2010, 3, 136–168.
- 44S. Yan, K. P. Abhilash, L. Tang, M. Yang, Y. Ma, Q. Xia, Q. Guo, H. Xia, Small 2019, 15, 1804371.
- 45A. Mateen, M. S. Javed, X. Zhang, I. Hussain, T. Najam, A. Ahmad, A. A. Alothman, M. Ouladsmane, S. M. Eldin, W. Han, K.-Q. Peng, J. Mater. Chem. A 2023, 11, 11804–11818.
- 46S. Yetiman, F. Kılıç Dokan, M. S. Onses, X. Huang, E. Yılmaz, E. Sahmetlioglu, J. Energy Storage 2023, 68, 107608.
10.1016/j.est.2023.107608 Google Scholar
- 47N. S. Lopa, M. K. Akbari, D. Wu, F. Verpoort, S. Zhuiykov, Energy Fuels 2023, 37, 3142–3151.
- 48X. Zhang, N. Peng, T. Liu, R. Zheng, M. Xia, H. Yu, S. Chen, M. Shui, J. Shu, Nano Energy 2019, 65, 104049.
- 49X. Wang, Q. Wei, H. Li, J. Sun, H. Li, Y. He, Z. Liu, J. Mater. Chem. A 2022, 10, 7517–7556.
- 50C. Lamiel, I. Hussain, H. Rabiee, O. R. Ogunsakin, K. Zhang, Coord. Chem. Rev. 2023, 480, 215030.
- 51C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, et al., Acta Phys -Chim. Sin. 2021, 37, 2108017.
- 52C. Park, E. Samuel, B. Joshi, T. Kim, A. Aldalbahi, M. El-Newehy, W. Y. Yoon, S. S. Yoon, Chem. Eng. J. 2020, 395, 125018.
- 53S. Zhu, J. Ni, Y. Li, Nano Res. 2020, 13, 1825–1841.
- 54H. Wang, S. Lu, Y. Chen, L. Han, J. Zhou, X. Wu, W. Qin, J. Mater. Chem. A 2015, 3, 23677–23683.
- 55H. Fan, P. Mao, H. Sun, Y. Wang, S. S. Mofarah, P. Koshy, H. Arandiyan, Z. Wang, Y. Liu, Z. Shao, Materials Horizons 2022, 9, 524–546.
- 56Y. Wu, C. Zhang, H. Zhao, Y. Lei, J. Mater. Chem. A 2021, 9, 9506–9534.
- 57M. B. Poudel, A. R. Kim, S. Ramakrishan, N. Logeshwaran, S. K. Ramasamy, H. J. Kim, D. J. Yoo, Compos. B. Eng. 2022, 247, 110339.
- 58S. Hussain, D. Vikraman, M. T. Mehran, M. Hussain, G. Nazir, S. A. Patil, H.-S. Kim, J. Jung, Renew. Energ. 2022, 185, 585–597.
- 59A. Liang, D. Li, W. Zhou, Y. Wu, G. Ye, J. Wu, Y. Chang, R. Wang, J. Xu, G. Nie, J. Hou, Y. Du, J. Electroanal. Chem. 2018, 824, 136–146.
- 60B. Pandit, S. S. Karade, B. R. Sankapal, J. ACS Appl. Mater. Interf. 2017, 9, 44880–44891.
- 61P. A. Shinde, N. R. Chodankar, M. A. Abdelkareem, S. J. Patil, Y.-K. Han, K. Elsaid, A. G. Olabi, Small 2022, 18, 2200248.
- 62Z. Wang, F.-q. Wang, H. Chen, L. Zhu, H.-j. Yu, X.-y. Jian, J. Alloys Compd. 2010, 492, L50–L53.
- 63S. Zhang, L. Qiu, Y. Zheng, Q. Shi, T. Zhou, V. Sencadas, Y. Xu, S. Zhang, L. Zhang, C.-L. Zhang, S.-H Yu, Z. Guo, Adv. Funct. Mater. 2021, 31, 2006425.
- 64M. Liu, X. Ma, L. Gan, Z. Xu, D. Zhu, L. Chen, J. Mater. Chem. A 2014, 2, 17107–17114.
- 65D. A. Grishanov, A. A. Mikhaylov, A. G. Medvedev, J. Gun, P. V. Prikhodchenko, Z. J. Xu, A. Nagasubramanian, M. Srinivasan, O. Lev, Energy Technol. 2018, 6, 127–133.
- 66Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Coord. Chem. Rev. 2022, 451, 214265.
- 67M. Han, Z. Zhou, Y. Li, Q. Chen, M. Chen, ChemElectroChem 2021, 8, 4412–4426.
- 68D. Chakravarty, P. Kumar, V. S. Ugale, D. J. Late, EurJIC 2015, 2015.
- 69P. Zhou, L. Fan, J. Wu, C. Gong, J. Zhang, Y. Tu, J. Alloys Compd. 2016, 685, 384–390.
- 70M. Manikandan, P. N. Francis, S. Dhanuskodi, N. Maheswari, G. Muralidharan, J. Mater. Sci. Mater. Electron. 2018, 29, 17397–17404.
- 71S. Deshagani, P. Ghosal, M. Deepa, Electrochim. Acta 2020, 345, 136200.
- 72H. K. Rathore, M. Hariram, M. K. Ganesha, A. K. Singh, D. Das, M. Kumar, K. Awasthi, D. Sarkar, J. Colloid Interface Sci. 2022, 621, 110–118.
- 73L. K. Bommineedi, T. B. Deshmukh, A. Agarwal, N. Upadhyay, A. C. Mendhe, S. R. Sankapal, S. A. Pande, B. R. Sankapal, J. Taiwan Inst. Chem. Eng. 2023, 142, 104607.
- 74Z. Chen, Y. Zhao, F. Mo, Z. Huang, X. Li, D. Wang, G. Liang, Q. Yang, A. Chen, Q. Li, L. Ma, Y. Guo, C. Zhi, Small Struct. 2020, 1, 2000005.
- 75B. Pandit, S. R. Rondiya, R. W. Cross, N. Y. Dzade, B. R. Sankapal, Chem. Eng. J. 2022, 429, 132505.
- 76M. Manikandan, P. N. Francis, S. Dhanuskodi, N. Maheswari, G. Muralidharan, J. Mater. Sci.: Mater. Electron. 2018, 29, 17397–17404.
- 77M. Liu, Z. Wang, J. Liu, G. Wei, J. Du, Y. Li, C. An, J. Zhang, J. Mater. Chem. A 2017, 5, 1035–1042.
- 78B. Ye, C. Gong, M. Huang, Y. Tu, X. Zheng, L. Fan, J. Lin, J. Wu, RSC Adv. 2018, 8, 7997–8006.
- 79Q.-C. Jia, H.-J. Zhang, L.-B. Kong, Electrochim. Acta 2020, 337, 135749.
- 80M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, ChemistrySelect 2018, 3, 9034–9040.
- 81S. J. Patil, A. C. Lokhande, D. W. Lee, J. H. Kim, C. D. Lokhande, J. Colloid Interface Sci. 2017, 490, 147–153.
- 82J. Cao, M. Safdar, Z. Wang, J. He, J. Mater. Chem. A 2013, 1, 10024–10029.
- 83N. J. Vickers, Curr. Biol. 2017, 27, PR713–PR715.
10.1016/j.cub.2017.05.064 Google Scholar
- 84B. Ye, S. Xiao, X. Cao, J. Chen, A. Zhou, Q. Zhao, W. Huang, J. Wang, J. Power Sources 2021, 506, 230056.
- 85S. Siddique, C. C. Gowda, R. Tromer, S. Demiss, A. R. S. Gautam, O. E. Femi, P. Kumbhakar, D. S. Galvao, A. Chandra, C. S. Tiwary, ACS Appl. Nano Mater. 2021, 4, 4829–4838.
- 86H. K. Rathore, M. Hariram, M. K. Ganesha, A. K. Singh, D. Das, M. Kumar, K. Awasthi, D. Sarkar, J. Colloid Interface Sci. 2022, 621, 110–118.
- 87L. K. Bommineedi, T. K. Shivasharma, B. R. Sankapal, Ceram. Int. 2022, 48, 137–147.
- 88B. Ye, M. Huang, S. Jiang, L. Fan, J. Lin, J. Wu, Mater. Chem. Phys. 2018, 211, 389–398.
- 89P. Rani, A. P. Alegaonkar, R. Biswas, Y. Jewariya, K. K. Haldar, P. S. Alegaonkar, Front. Chem. 2022, 10, 1027554.
- 90M. Abdullah, N. Alwadai, M. Al Huwayz, S. Manzoor, P. John, A. G. Abid, M. I. Ghouri, S. Aman, M. S. Al-Buriahi, M. N. Ashiq, Energy Fuels 2023, 37, 1297–1309.
- 91B. Ye, M. Huang, L. Fan, J. Lin, J. Wu, J. Alloys Compd. 2019, 776, 993–1001.
- 92C. H. Naylor, W. M. Parkin, J. Ping, Z. Gao, Y. R. Zhou, Y. Kim, F. Streller, R. W. Carpick, A. M. Rappe, M. Drndić, J. M. Kikkawa, A. T. C. Johnson, Nano Lett. 2016, 16, 4297–4304.
- 93J. Zhou, F. Liu, J. Lin, X. Huang, J. Xia, B. Zhang, Q. Zeng, H. Wang, C. Zhu, L. Niu, et al., Adv. Mater. 2017, 29, 1603471.
- 94Y. Yoo, Z. P. DeGregorio, Y. Su, S. J. Koester, J. E. Johns, Adv. Mater. 2017, 29, 1605461.
- 95L. Zhou, A. Zubair, Z. Wang, X. Zhang, F. Ouyang, K. Xu, W. Fang, K. Ueno, J. Li, T. Palacios, J. Kong, M. S. Dresselhaus, Adv. Mater. 2016, 28, 9526–9531.
- 96X. Zhang, Z. Jin, L. Wang, J. A. Hachtel, E. Villarreal, Z. Wang, T. Ha, Y. Nakanishi, C. S. Tiwary, J. Lai, et al. ACS Appl. Mater. Interfaces 2019, 11, 12777–12785.
- 97W. Huang, L. Yin, F. Wang, R. Cheng, Z. Wang, M. G. Sendeku, J. Wang, N. Li, Y. Yao, X. Yang, C. Shan, T. Yang, J. He, Adv. Funct. Mater. 2019, 29, 1902890.
- 98H. Kim, J. E. Johns, Y. Yoo, Small 2020, 16, 2002849.
- 99Y. Zhou, L. Tao, Z. Chen, H. Lai, W. Xie, J.-X. Xu, Small 2021, 17, 2102146.
- 100C. Chubilleau, B. Lenoir, S. Migot, A. Dauscher, J. Colloid Interface Sci. 2011, 357, 13–17.
- 101N. Jayababu, S. Jo, Y. Kim, D. Kim, ACS Appl. Mater. Interfaces 2021, 13, 19938–19949.
- 102M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, C. A. Mirkin, Chem. Rev. 2011, 111, 3736–3827.
- 103G.-H. Dong, Y.-J. Zhu, G.-F. Cheng, Y.-J. Ruan, J. Alloys Compd. 2013, 550, 164–168.
- 104H. Feng, C. Wu, P. Zhang, J. Mi, M. Dong, RSC Adv. 2015, 5, 100309–100315.
- 105H. J. Im, B. Koo, M.-S. Kim, J. E. Lee, Appl. Surf. Sci. 2019, 475, 510–514.
- 106D. Pinisetty, D. Davis, E. J. Podlaha-Murphy, M. C. Murphy, A. B. Karki, D. P. Young, R. V. Devireddy, Acta Mater. 2011, 59, 2455–2461.
- 107S. Kapoor, H. Ahmad, C. M. Julien, S. S. Islam, J. Alloys Compd. 2019, 809, 151765.
- 108R. R. Singh, D. Painuly, R. K. Pandey, Mater. Chem. Phys. 2009, 116, 261–268.
- 109Q. Yao, Y. Zhu, L. Chen, Z. Sun, X. Chen, J. Alloys Compd. 2009, 481, 91–95.
- 110D. Chakravarty, D. J. Late, EurJIC 2015, 2015, 1973–1980..
- 111D. Tan, F. García, Chem. Soc. Rev. 2019, 48, 2274–2292.
- 112H. Kim, M. Kim, Y. H. Yoon, Q. H. Nguyen, I. T. Kim, J. Hur, S. G. Lee, Electrochim. Acta 2019, 293, 8–18.
- 113S. Lee, H. Choi, K. J. J. o. P. S. Eom, J. Power Sources 2019, 430, 112–119.
- 114J. Leng, Z. Wang, J. Wang, H.-H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, Z. J. C. S. R. Guo, Chem. Soc. Rev. 2019, 48, 3015–3072.
- 115Y. Zhu, S. H. Choi, X. Fan, J. Shin, Z. Ma, M. R. Zachariah, J. W. Choi, C. Wang, Adv. Energy Mater. 2017, 7, 1601578.
- 116F. B. Ajdari, E. Kowsari, M. N. Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S. K. Eshkalak, V. Haddadi-Asl, A. Chinnappan, S. Ramakrishna, Coord. Chem. Rev. 2020, 422, 213441.
- 117K. K. Patel, T. Singhal, V. Pandey, T. P. Sumangala, M. S. Sreekanth, J. Energy Storage 2021, 44, 103366.
- 118J. Huang, L. Wang, Z. Peng, M. Peng, L. Li, X. Tang, Y. Xu, L. Tan, K. Yuan, Y. Chen, J. Mater. Chem. A 2021, 9, 8435–8443.
- 119N. Jayababu, S. Jo, Y. Kim, D. Kim, ACS Appl. Mater. Interfaces 2021, 13, 19938–19949.
- 120F. Yang, M. Yang, J. Zhang, H. Guo, T. Zhang, H. Guo, W. Yang, J. Alloys Compd. 2022, 911, 164782.
- 121N. Jayababu, D. Kim, Small 2021, 17, 2102369.
- 122S. Chen, B. Wu, H. Qian, Z. Wu, P. Liu, F. Li, H. He, J. Wu, B. Liu, J. Power Sources 2019, 438, 227000.
- 123T. Wang, Y. Su, M. Xiao, M. Zhao, T. Zhao, J. Shen, Trans. Tianjin Univ. 2021, 28, 112–122.
10.1007/s12209-021-00306-7 Google Scholar
- 124M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, ChemistrySelect 2018, 3, 9034–9040.
- 125B. Pandit, S. R. Rondiya, R. W. Cross, N. Y. Dzade, B. R. Sankapal, 2022, 429, 132505.
- 126N. Y. W. Zaw, S. Jo, J. Park, N. Kitchamsetti, N. Jayababu, D. Kim, Appl. Clay Sci. 2022, 225, 106539.
- 127M. Manikandan, K. Subramani, M. Sathish, S. Dhanuskodi, RCS. Adv. 2020, 10, 13632–13641.
- 128N. Jayababu, S. Jo, Y. Kim, D. Kim, Ultrason. Sonochem. 2021, 71, 105374.
- 129S. Zhang, D. Yang, M. Zhang, Y. Liu, T. Xu, J. Yang, Z.-Z. Yu, Inorg. Chem. Front. 2020, 7, 477–486.
- 130B. Ye, M. Huang, Q. Bao, S. Jiang, J. Ge, H. Zhao, L. Fan, J. Lin, J. Wu, ChemElectroChem 2018, 5, 507–514.
- 131S. J. Patil, A. C. Lokhande, D.-W. Lee, J. Kim, C. D. Lokhande, J. Colloid Interface Sci. 2017, 490, 147–153.
- 132V. S. Kumbhar, A. C. Lokhande, N. S. Gaikwad, C. D. Lokhande, Chem. Phys. Lett. 2016, 645, 112–117.
- 133S. J. Patil, B. H. Patil, R. N. Bulakhe, C. D. Lokhande, RSC Adv. 2014, 4, 56332–56341.
- 134V. S. Kumbhar, A. C. Lokhande, N. S. Gaikwad, C. D. Lokhande, Chem. Phys. Lett. 2016, 645, 112–117.
- 135P. Yu, W. Fu, Q. Zeng, J. Lin, C. Yan, Z. Lai, B. Tang, K. Suenaga, H. Zhang, Z. Liu, Adv. Mater. 2017, 29, 1701909.