Recent Theoretical and Experimental Advancements of Aluminum-Sulfur Batteries
Dr. Muhammad Faheem
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorDr. Arshad Hussain
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Muhammad Ali
- [email protected]
- +966-13-860-8743 (M. A. I. H); +966-13-860-3744 | Fax: +966-13-860-7264
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Md. Abdul Aziz
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorDr. Muhammad Faheem
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorDr. Arshad Hussain
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Muhammad Ali
- [email protected]
- +966-13-860-8743 (M. A. I. H); +966-13-860-3744 | Fax: +966-13-860-7264
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorCorresponding Author
Dr. Md. Abdul Aziz
Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261 Dhahran, Saudi Arabia
Search for more papers by this authorAbstract
Aluminum-sulfur batteries (AlSBs) exhibit significant potential as energy storage systems due to their notable attributes, including a high energy density, cost-effectiveness, and abundant availability of aluminum and sulfur. In order to commercialize AlSBs, an understanding of their working principles is necessary. In this review, we examine the current advancements in cathodes, both in theory and practice, as well as the progress made in aqueous and nonaqueous electrolytes. We also explore the modifications made to separators and the theoretical understanding of problems associated with AlSBs. Furthermore, we discuss future research directions aimed at resolving these issues. Our aim is to summarize the current progress in AlSBs and, based on recent progress and understanding of the mechanism, help design a battery to overcome the challenges that such batteries have been facing.
References
- 1H.-J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 2015, 54(47), 14031–14035.
- 2C. Tsai, F. Abild-Pedersen, J. K. Nørskov, Nano Lett. 2014, 14(3), 1381–1387.
- 3A. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46(5), 1125–1134.
- 4H.-G. Jung, S.-T. Myung, C. S. Yoon, S.-B. Son, K. H. Oh, K. Amine, B. Scrosati, Y.-K. Sun, Energy Environ. Sci. 2011, 4(4), 1345–1351.
- 5M. Faheem, X. Yin, R. Shao, L. Zhou, C. Zeng, N. Ahmad, M. K. Tufail, W. Yang, J. Alloys Compd. 2022, 922, 166132.
- 6S. Dühnen, J. Betz, M. Kolek, R. Schmuch, M. Winter, T. Placke, Small Methods 2020, n/a (n/a), 2000039..
10.1002/smtd.202000039 Google Scholar
- 7A. Manthiram, ACS Cent. Sci. 2017, 3(10), 1063–1069.
- 8J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135(4), 1167–1176.
- 9M. Armand, J. M. Tarascon, Nature. 2008, 451, 652.
- 10Z. W. Seh, J. H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5(1), 5017.
10.1038/ncomms6017 Google Scholar
- 11A. Hussain, D. Li, Y. Luo, H. Zhang, H. Zhang, X. Li, J. Membr. Sci. 2020, 605, 118108.
- 12A. Hussain, A. Mehmood, A. Saleem, M. K. Majeed, W. Raza, R. Iqbal, S. Rauf, A. Saad, Y. Deng, G. Luo, Chem. Eng. J. 2023, 453, 139804.
- 13N. Ahmad, L. Zhou, M. Faheem, M. K. Tufail, L. Yang, R. Chen, Y. Zhou, W. Yang, ACS Appl. Mater. Interfaces 2020, 12(19), 21548–21558.
- 14H. Ye, Y. Li, InfoMat. 2022, 4(5). DOI 10.1002/inf2.12291.
- 15F. Shi, C. Chen, Z. L. Xu, Adv. Fiber Mater. 2021, 3(5), 275–301.
10.1007/s42765-021-00070-2 Google Scholar
- 16L. Lv, N. Ahmad, C. Zeng, P. Yu, T. Song, Q. Dong, W. Yang, ACS Appl. Mater. Interfaces 2022, 14(35), 39985–39995.
- 17N. Ahmad, L. Zhou, M. Faheem, M. K. Tufail, L. Yang, R. Chen, Y. Zhou, W. Yang, ACS Appl. Mater. Interfaces 2020, 12(19), 21548–21558.
- 18N. Ahmad, S. Sun, P. Yu, W. Yang, Adv. Funct. Mater. 2022, 32(28), 2201528.
10.1002/adfm.202201528 Google Scholar
- 19A. Hussain, Y. Luo, T. Li, H. Zhang, S. Mirza, H. Zhang, X. Li, ACS Appl. Mater. Interfaces 2020, 12(50), 55809–55819.
- 20M. Oschatz, S. Thieme, L. Borchardt, M. R. Lohe, T. Biemelt, J. Brückner, H. Althues, S. Kaskel, Chem. Commun. 2013, 49(52), 5832–5834.
- 21M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8(12), 3477–3494.
- 22J. Scheers, S. Fantini, P. Johansson, J. Power Sources 2014, 255, 204–218.
- 23M. Faheem, W. Li, N. Ahmad, L. Yang, M. K. Tufail, Y. Zhou, L. Zhou, R. Chen, W. Yang, J. Colloid Interface Sci. 2021, 585, 328–336.
- 24Sungjemmenla, C. B. Soni, S. K. Vineeth, V. Kumar, Adv. Energy Sustainability Res. 2022, 3(5), 2100157.
10.1002/aesr.202100157 Google Scholar
- 25W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu, H. Yu, Energy Storage Mater. 2019, 22, 418–423.
- 26S. Das, S. S. Manna, B. Pathak, ChemSusChem. 2023, 16(4), e202201405.
10.1002/cssc.202201405 Google Scholar
- 27N. Muralidharan, C. N. Brock, A. P. Cohn, D. Schauben, R. E. Carter, L. Oakes, D. G. Walker, C. L. Pint, ACS Nano. 2017, 11(6), 6243–6251.
- 28D. Vikraman, S. Hussain, I. Rabani, A. Feroze, M. Ali, Y. S. Seo, S. H. Chun, J. Jung, H. S. Kim, Nano Energy. 2021, 87, 106161.
- 29N. Yao, X. Chen, Z. H. Fu, Q. Zhang, Chem. Rev. 2022, 122(12), 10970–11021.
- 30Z. Wang, X. Zheng, A. Chen, Y. Han, L. Wei, J. Li, ACS Materials Lett. 2022, 4(8), 1436–1445.
10.1021/acsmaterialslett.2c00306 Google Scholar
- 31N. Muralidharan, C. N. Brock, A. P. Cohn, D. Schauben, R. E. Carter, L. Oakes, D. G. Walker, C. L. Pint, ACS Nano. 2017, 11(6), 6243–6251.
- 32Z. Huang, W. Wang, W.-L. Song, M. Wang, H. Chen, S. Jiao, D. Fang, Angew. Chem. Int. Ed. 2022, 61(24), e202202696.
- 33G. Mamantov, J. Hvistendahl, J. Electroanal. Chem. 1984, 168(1–2), 451–466.
- 34D. Peramunage, S. Licht, Science (1979). 1993, 261, 5124.
- 35G. Cohn, L. Ma, L. A. Archer, J. Power Sources 2015, 283, 416–422.
- 36T. Gao, X. Li, X. Wang, J. Hu, F. Han, X. Fan, L. Suo, A. J. Pearse, S. B. Lee, G. W. Rubloff, Angew. Chem. 2016, 128(34), 9898.
10.1002/anie.201603531 Google Scholar
- 37P. Bhauriyal, S. Das, B. Pathak, J. Phys. Chem. C 2020, 124(21), 11317–11324.
- 38Y. Guo, H. Jin, Z. Qi, Z. Hu, H. Ji, L. J. Wan, Adv. Funct. Mater. 2019, 29(7), 1807676.
10.1002/adfm.201807676 Google Scholar
- 39X. Yu, A. Manthiram, Adv. Energy Mater. 2017, 7(18), 1700561.
10.1002/aenm.201700561 Google Scholar
- 40X. Yu, M. J. Boyer, G. S. Hwang, A. Manthiram, Chem. 2018, 4(3), 586–598.
- 41A. Bhowmik, D. Carrasco-Busturia, P. Jankowski, R. Raccichini, N. Garcia-Araez, J. M. García-Lastra, J. Phys. Chem. C 2022, 126(1), 40–47.
- 42H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, et al., Angew. Chem. Int. Ed. 2018, 57(7), 1898–1902.
- 43P. Bhauriyal, B. Pathak, Mater Adv. 2020, 1(9), 3572–3581.
10.1039/D0MA00546K Google Scholar
- 44Y. Cui, Z. Cao, Y. Zhang, H. Chen, J. Gu, Z. Du, Y. Shi, B. Li, S. Yang, Small Science 2021, 1(6), 2100017.
10.1002/smsc.202100017 Google Scholar
- 45H. Tian, A. Song, H. Tian, J. Liu, G. Shao, H. Liu, G. Wang, Chem. Sci. 2021, 12(22), 7656–7676.
- 46Z. Hu, S. Xie, Y. Guo, Y. Ye, J. Zhang, S. Jin, H. Ji, J. Energy Chem. 2022, 67, 354–360.
- 47S. Ju, J. Ye, H. Zhang, W. Wang, G. Xia, W. Cui, Y. Yang, H. Pan, X. Yu, Energy Storage Mater. 2023, 56, 1–12.
- 48S. Ju, C. Yuan, J. Zheng, L. Yao, T. Zhang, G. Xia, X. Yu, Energy Storage Mater. 2022, 52, 524–533.
- 49Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4(7), 615–622.
- 50F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren, Z. Yang, J. Zhang, C. Fu, B. Sun, Nano-Micro Lett. 2022, 14(1), 169.
10.1007/s40820-022-00915-4 Google Scholar
- 51Y. Zhang, L. Ma, R. Tang, X. Zheng, X. Wang, Y. Dong, G. Kong, F. Zhao, L. Wei, Int. J. Hydrogen Energy 2021, 46(7), 4936–4946.
- 52K. Zhang, T. H. Lee, J. H. Cha, H. W. Jang, M. Shokouhimehr, J.-W. Choi, Electron. Mater. Lett. 2019, 15(6), 720–726.
- 53J. Smajic, S. Wee, F. R. F. Simoes, M. N. Hedhili, N. Wehbe, E. Abou-Hamad, P. M. F. J. Costa, ACS Appl. Energ. Mater. 2020, 3(7), 6805–6814.
- 54D. Zhang, X. Zhang, B. Wang, S. He, S. Liu, M. Tang, H. Yu, J. Mater. Chem. A 2021, 9(14), 8966–8974.
10.1039/D1TA01422F Google Scholar
- 55W. Chu, S. He, S. Liu, X. Zhang, S. Li, H. Yu, Chem. Commun. 2022, 58(82), 11539–11542.
- 56Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu, H. Ji, L. J. Wan, Angew. Chem. Int. Ed. 2020, 59(51), 22963.
- 57Z. Lin, M. Mao, T. Lv, S. Li, Y. S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Energy Storage Mater. 2022, 51, 266–272.
- 58S. Ju, J. Ye, H. Zhang, W. Wang, G. Xia, W. Cui, Y. Yang, H. Pan, X. Yu, Energy Storage Mater. 2023, 56, 1–12.
- 59X. Zheng, Z. Wang, J. Li, L. Wei, Sci. China Mater. 2022, 65(6), 1463–1475.
- 60X. Zheng, R. Tang, Y. Zhang, L. Ma, X. Wang, Y. Dong, G. Kong, L. Wei, Sustain. Energy Fuels 2020, 4(4), 1630–1641.
- 61Y. Ai, S. C. Wu, F. Zhang, X. Zhang, R. Li, Y. Lan, L. Cai, W. Wang, Energy Storage Mater. 2022, 48, 297–305.
- 62K. Zhang, T. H. Lee, J. H. Cha, R. S. Varma, J. W. Choi, H. W. Jang, M. Shokouhimehr, Sci. Rep. 2019, 9(1), 13573.
10.1038/s41598-019-50080-9 Google Scholar
- 63Z. Huang, W. Wang, M. Kou, H. Lei, Y. Luo, S. Jiao, J. Mater. Sci. Technol. 2023, 152, 86–93.
- 64L. Fang, L. Zhou, L. Cui, P. Jiao, Q. An, K. Zhang, J. Energy Chem. 2021, 63, 320–327.
- 65X. Xiao, J. Tu, Z. Huang, S. Jiao, Phys. Chem. Chem. Phys. 2021, 23(17), 10326–10334.
- 66A. Lv, S. Lu, W. Yan, W. Hu, M. Wang, Sustain. Energy Fuels 2021, 5(24), 6328–6337.
- 67D. Zhang, W. Chu, D. Y. Wang, S. Li, S. Zhao, X. Zhang, Y. Fu, H. Yu, Adv. Funct. Mater. 2022, 32(39).
- 68F. Gan, K. Chen, N. Li, Y. Wang, Y. Shuai, X. He, Ionics (Kiel) 2019, 25(9), 4243–4249.
- 69E. O. Filatova, A. S. Konashuk, J. Phys. Chem. C 2015, 119(35), 20755–20761.
- 70Z. Hu, Y. Guo, H. Jin, H. Ji, L. J. Wan, Chem. Commun. 2020, 56(13), 2023–2026.
- 71J. Smajic, A. Alazmi, N. Batra, T. Palanisamy, D. H. Anjum, P. M. F. J. Costa, Small 2018, 14(51).
- 72W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu, H. Yu, Energy Storage Mater. 2019, 22, 418–423.
- 73G. Cohn, L. Ma, L. A. Archer, J. Power Sources 2015, 283, 418–423.
10.1016/j.jpowsour.2015.02.131 Google Scholar
- 74S. Xia, X.-M. Zhang, K. Huang, Y.-L. Chen, Y.-T. Wu, J. Electroanal. Chem. 2015, 757, 167–175.
- 75C. Xu, T. Diemant, X. Liu, S. Passerini, Adv. Funct. Mater. 2023, 33, 2214405.
- 76Y. Bian, Y. Li, Z. Yu, H. Chen, K. Du, C. Qiu, G. Zhang, Z. Lv, M. C. Lin, ChemElectroChem. 2018, 5(23), 3607.
- 77Y. Bian, W. Jiang, Y. Zhang, L. Zhao, X. Wang, Z. Lv, S. Zhou, Y. Han, H. Chen, M. C. Lin, ChemSusChem. 2022, 15(1), e202101398.
10.1002/cssc.202101398 Google Scholar