Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery
Chien-Pin Chou
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorAditya Wibawa Sakti
Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520 Japan
Search for more papers by this authorYoshifumi Nishimura
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorCorresponding Author
Hiromi Nakai
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520 Japan
Department of Chemistry and Biochemistry, School of Advanced Science and Enigineering, Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorChien-Pin Chou
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorAditya Wibawa Sakti
Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520 Japan
Search for more papers by this authorYoshifumi Nishimura
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorCorresponding Author
Hiromi Nakai
Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555 Japan
Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520 Japan
Department of Chemistry and Biochemistry, School of Advanced Science and Enigineering, Waseda University, Tokyo, 169-8555 Japan
Search for more papers by this authorAbstract
The density-functional tight-binding (DFTB) method is one of the useful quantum chemical methods, which provides a good balance between accuracy and computational efficiency. In this account, we reviewed the basis of the DFTB method, the linear-scaling divide-and-conquer (DC) technique, as well as the parameterization process. We also provide some refinement, modifications, and extension of the existing parameters that can be applicable for lithium-ion battery systems. The diffusion constants of common electrolyte molecules and LiTFSA salt in solution have been estimated using DC-DFTB molecular dynamics simulation with our new parameters. The resulting diffusion constants have good agreement to the experimental diffusion constants.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
tcr201800141-sup-0001-misc_information.pdf224.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 2014, 7, 1307–1338.
- 2H. Gwon, J. Hong, H. Kim, D.-H. Seo, S. Jeon, K. Kang, Energy Environ. Sci. 2014, 7, 538–551.
- 3J.-M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 4A. S. Hameed, in Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, Springer, Singapore, 2016, pp. 1–30.
10.1007/978-981-10-2302-6_1 Google Scholar
- 5G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci. 2012, 5, 6652–6667.
- 6J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E 170–E192.
- 7M. D. Levi, D. Aurbach, J. Phys. Chem. B 1997, 101, 4641–4647.
- 8J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, Science 2010, 330, 1515–1520.
- 9Q.-F. Li, C.-G. Duan, X. G. Wan, J.-L. Kuo, J. Phys. Chem. C 2015, 119, 8662–8670.
- 10S. Venkatraman, V. Subramanian, S. Gopu Kumar, N. G. Renganathan, N. Muniyandi, Electrochem. Commun. 2000, 2, 18–22.
- 11M. M. Kalantarian, S. Asgari, P. Mustarelli, J. Mater. Chem. A 2013, 1, 2847–2855.
- 12D. W. Murphy, F. A. Trumbore, J. Electrochem. Soc. 1976, 123, 960–964.
- 13M. S. Whittingham, Chem. Rev. 2004, 104, 4271–4302.
- 14J. Barker, R. K. B. Gover, P. Burns, A. Bryan, M. Y. Saidi, J. L. Swoyer, J. Power Sources 2005, 146, 516–520.
- 15K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull. 1980, 15, 783–789.
- 16E. G. Leggesse, J.-C. Jiang, J. Phys. Chem. A 2012, 116, 11025–11033.
- 17M. Datt Bhatt, C. O'Dwyer, Phys. Chem. Chem. Phys. 2015, 17, 4799–4844.
- 18J. Kasnatscheew, R. Wagner, M. Winter, I. Cekic-Laskovic, Top. Curr. Chem. 2018, 376, 16.
- 19M. Callsen, K. Sodeyama, Z. Futera, Y. Tateyama, I. Hamada, J. Phys. Chem. B 2017, 121, 180–188.
- 20J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 12032.
- 21Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039–5046.
- 22W. Yang, Phys. Rev. Lett. 1991, 66, 1438–1441.
- 23W. Yang, T. Lee, J. Chem. Phys. 1995, 103, 5674–5678.
- 24T. Akama, M. Kobayashi, H. Nakai, J. Comput. Chem. 2007, 28, 2003–2012.
- 25M. Kobayashi, Y. Imamura, H. Nakai, J. Chem. Phys. 2007, 127, 074103.
- 26M. Kobayashi, H. Nakai, J. Chem. Phys. 2008, 129, 044103.
- 27M. Kobayashi, H. Nakai, J. Chem. Phys. 2009, 131, 114108.
- 28M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys. 2011, 134, 034105.
- 29M. Kobayashi, H. Nakai, J. Chem. Phys. 2013, 138, 044102.
- 30T. Yoshikawa, M. Kobayashi, A. Fujii, H. Nakai, J. Phys. Chem. B 2013, 117, 5565–5573.
- 31H. Nakai, T. Yoshikawa, J. Chem. Phys. 2017, 146, 124123.
- 32M. Kobayashi, H. Nakai, in Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications, Springer Netherlands, Dordrecht, 2011, pp. 97–127.
10.1007/978-90-481-2853-2_5 Google Scholar
- 33T. Yoshikawa, H. Nakai, in Fragmentation: Toward Accurate Calculations on Complex Molecular Systems, Wiley-Blackwell, 2017, pp. 297–321.
10.1002/9781119129271.ch10 Google Scholar
- 34H. Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, W. Yang, Proteins Struct. Funct. Bioinf. 2001, 44, 484–489.
- 35H. Nishizawa, Y. Nishimura, M. Kobayashi, S. Irle, H. Nakai, J. Comput. Chem. 2016, 37, 1983–1992.
- 36H. Nakai, A. W. Sakti, Y. Nishimura, J. Phys. Chem. B 2016, 120, 217–221.
- 37D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 1995, 51, 12947–12957.
- 38G. Seifert, D. Porezag, T. Frauenheim, Int. J. Quantum Chem. 1996, 58, 185–192.
- 39M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260–7268.
- 40Y. Yang, H. Yu, D. York, Q. Cui, M. Elstner, J. Phys. Chem. A 2007, 111, 10861–10873.
- 41M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 2011, 7, 931–948.
- 42T. A. Niehaus, M. Elstner, T. Frauenheim, S. Suhai, Comput. Theor. Chem. 2001, 541, 185–194.
- 43M. Elstner, M. Gaus, in Computational Methods for Large Systems (Ed.: ), John Wiley & Sons, Inc., 2011, pp. 287–307.
10.1002/9780470930779.ch9 Google Scholar
- 44M. Gaus, A. Goez, M. Elstner, J. Chem. Theory Comput. 2013, 9, 338–354.
- 45M. Gaus, X. Lu, M. Elstner, Q. Cui, J. Chem. Theory Comput. 2014, 10, 1518–1537.
- 46X. Lu, M. Gaus, M. Elstner, Q. Cui, J. Phys. Chem. B 2015, 119, 1062–1082.
- 47M. Kubillus, T. Kubař, M. Gaus, J. Řezáč, M. Elstner, J. Chem. Theory Comput. 2015, 11, 332–342.
- 48J. Frenzel, A. F. Oliveira, H. A. Duarte, T. Heine, G. Seifert, Z. Anorg. Allg. Chem. 2005, 631, 1267–1271.
- 49V. Q. Vuong, J. Akkarapattiakal Kuriappan, M. Kubillus, J. J. Kranz, T. Mast, T. A. Niehaus, S. Irle, M. Elstner, J. Chem. Theory Comput. 2018, 14, 115–125.
- 50C. Kohler, G. Seifert, U. Gerstmann, M. Elstner, H. Overhof, T. Frauenheim, Phys. Chem. Chem. Phys. 2001, 3, 5109–5114.
- 51A. Sieck, T. Frauenheim, K. A. Jackson, Phys. Status Solidi B n.d., 240, 537–548.
10.1002/pssb.200301886 Google Scholar
- 52C. Köhler, T. Frauenheim, Surf. Sci. 2006, 600, 453–460.
- 53P. Goyal, H. J. Qian, S. Irle, X. Lu, D. Roston, T. Mori, M. Elstner, Q. Cui, J. Phys. Chem. B 2014, 118, 11007–11027.
- 54A. W. Sakti, Y. Nishimura, H. Nakai, J. Phys. Chem. B 2017, 121, 1362–1371.
- 55A.-N. Bondar, S. Fischer, J. C. Smith, M. Elstner, S. Suhai, J. Am. Chem. Soc. 2004, 126, 14668–14677.
- 56J. C. Slater, G. F. Koster, Phys. Rev. 1954, 94, 1498–1524.
- 57K. Takegahara, Y. Aoki, A. Yanase, J. Phys. C: Solid State Phys. 1980, 13, 583.
- 58P. Melix, A. F. Oliveira, R. Rüger, T. Heine, Theor. Chem. Acc. 2016, 135.
- 59http://www.dftb.org/fileadmin/DFTB/public/misc/slakoformat.pdf, (accessed 2018).
- 60H. Eschrig, I. Bergert, Phys. Status Solidi B 1978, 90, 621–628.
- 61M. Wahiduzzaman, A. F. Oliveira, P. Philipsen, L. Zhechkov, E. Van Lenthe, H. A. Witek, T. Heine, J. Chem. Theory Comput. 2013, 9, 4006–4017.
- 62H. A. Witek, C.-P. Chou, G. Mazur, Y. Nishimura, S. Irle, B. Aradi, T. Frauenheim, K. Morokuma, J. Chin. Chem. Soc. 2016, 63, 57–68.
- 63C.-P. Chou, Y. Nishimura, C. C. Fan, G. Mazur, S. Irle, H. A. Witek, J. Chem. Theory Comput. 2016, 12, 53–64.
- 64H. A. Witek, C. Köhler, T. Frauenheim, K. Morokuma, M. Elstner, J. Phys. Chem. A 2007, 111, 5712–5719.
- 65M. Gaus, C.-P. Chou, H. Witek, M. Elstner, J. Phys. Chem. A 2009, 113, 11866–11881.
- 66M. P. Lourenço, M. C. da Silva, A. F. Oliveira, M. C. Quintão, H. A. Duarte, Theor. Chem. Acc. 2016, 135.
- 67M. Doemer, E. Liberatore, J. M. Knaup, I. Tavernelli, U. Rothlisberger, Mol. Phys. 2013, 111, 3595–3607.
- 68R. L. McGreevy, L. Pusztai, Mol. Simul. 1988, 1, 359–367.
- 69A. J. Lachawiec, R. T. Yang, J. Phys. Chem. C 2009, 113, 13933–13939.
- 70Z. Bodrog, B. Aradi, T. Frauenheim, J. Chem. Theory Comput. 2011, 7, 2654–2664.
- 71E. Małolepsza, H. A. Witek, K. Morokuma, Chem. Phys. Lett. 2005, 412, 237–243.
- 72J. J. Kranz, M. Kubillus, R. Ramakrishnan, O. A. von Lilienfeld, M. Elstner, J. Chem. Theory Comput. 2018, 14, 2341–2352.
- 73A. W. Huran, C. Steigemann, T. Frauenheim, B. Aradi, M. A. L. Marques, J. Chem. Theory Comput. 2018, 14, 2947–2954.
- 74M. Gaus, H. Jin, D. Demapan, A. S. Christensen, P. Goyal, M. Elstner, Q. Cui, J. Chem. Theory Comput. 2015, 11, 4205–4219.
- 75M. Elstner, Q. Cui, P. Munih, E. Kaxiras, T. Frauenheim, M. Karplus, J. Comput. Chem. 2003, 24, 565–581.
- 76P. Goyal, M. Elstner, Q. Cui, J. Phys. Chem. B 2011, 115, 6790–6805.
- 77A. W. Sakti, Y. Nishimura, C.-P. Chou, H. Nakai, J. Phys. Chem. A 2018, 122, 33–40.
- 78H. Nakai, Y. Nishimura, T. Kaiho, T. Kubota, H. Sato, Chem. Phys. Lett. 2016, 647, 127–131.
- 79A. W. Sakti, Y. Nishimura, H. Nakai, J. Chem. Theory Comput. 2018, 14, 351–356.
- 80A. W. Sakti, Y. Nishimura, H. Sato, H. Nakai, Bull. Chem. Soc. Jpn. 2017, 90, 1230–1235.
- 81M. Okoshi, C.-P. Chou, H. Nakai, J. Phys. Chem. B 2018, 122, 2600–2609.
- 82D. Marx, ChemPhysChem 2006, 7, 1848–1870.
- 83T. H. Choi, R. Liang, C. M. Maupin, G. A. Voth, J. Phys. Chem. B 2013, 117, 5165–5179.
- 84A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 85C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- 86S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211.
- 87P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 88T. H. Dunning, J. Chem. Phys. 1989, 90, 1007–1023.
- 89B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, A. K. Wilson, Theor. Chem. Acc. 2011, 128, 69–82.
- 90D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358–1371.
- 91K. Hayamizu, Y. Aihara, S. Arai, C. G. Martinez, J. Phys. Chem. B 1999, 103, 519–524.
- 92Y. Li, Y. Qi, J. Phys. Chem. C 2018, 122, 10755–10764.
- 93M. Gruden, L. Andjeklović, A. K. Jissy, S. Stepanović, M. Zlatar, Q. Cui, M. Elstner, J. Comput. Chem. 2017, 38, 2171–2185.
- 94C.-P. Chou, H. Nakai, Ensemble 2018, 20, 8–17.
- 95J. Kullgren, M. J. Wolf, K. Hermansson, C. Köhler, B. Aradi, T. Frauenheim, P. Broqvist, J. Phys. Chem. C 2017, 121, 4593–4607.
- 96A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650–7657.
- 97M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT 2009.
- 98F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78.
- 99S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 100S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 101J. Zheng, X. Xu, D. G. Truhlar, Theor. Chem. Acc. 2011, 128, 295–305.
- 102B. Grundkötter-Stock, V. Bezugly, J. Kunstmann, G. Cuniberti, T. Frauenheim, T. A. Niehaus, J. Chem. Theory Comput. 2012, 8, 1153–1163.
- 103J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157–1174.
- 104J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781–1802.
- 105A. von Wald Cresce, O. Borodin, K. Xu, J. Phys. Chem. C 2012, 116, 26111–26117.
- 106J. Wang, T. Hou, J. Comput. Chem. 2011, 32, 3505–3519.
- 107T. Fox, P. A. Kollman, J. Phys. Chem. B 1998, 102, 8070–8079.
- 108A. J. Easteal, L. A. Woolf, J. Chem. Soc. Faraday Trans. 1 1984, 80, 1287–1295.
- 109M. Holz, S. R. Heil, A. Sacco, Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.