Combined Theoretical and Experimental Studies of Sodium Battery Materials
Dr. Eriko Watanabe
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Sai-Cheong Chung
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Shin-ichi Nishimura
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorDr. Yuki Yamada
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorProf. Masashi Okubo
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorDr. Keitaro Sodeyama
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorDr. Yoshitaka Tateyama
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Center for Green Research on Energy and Environmental Materials, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Atsuo Yamada
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorDr. Eriko Watanabe
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Sai-Cheong Chung
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Shin-ichi Nishimura
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorDr. Yuki Yamada
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorProf. Masashi Okubo
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorDr. Keitaro Sodeyama
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorDr. Yoshitaka Tateyama
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Center for Green Research on Energy and Environmental Materials, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorCorresponding Author
Prof. Atsuo Yamada
Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto, 615-8245 Japan
Search for more papers by this authorAbstract
Owing to developments in theoretical chemistry and computer power, the combination of calculations and experiments is now standard practice in understanding and developing new materials for battery systems. Here, we briefly review our recent combined studies based on density functional theory and molecular dynamics calculations for electrode and electrolyte materials for sodium-ion batteries. These findings represent case studies of successful combinations of experimental and theoretical methods.
References
- 1D. H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692–7.
- 2S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680–3688.
- 3A. Urban, I. Matts, A. Abdellahi, G. Ceder, Adv. Energy Mater. 2016, 6.
- 4O. Pecher, J. Carretero-Gonzalez, K. J. Griffith, C. P. Grey, Chem. Mater. 2017, 29, 213–242.
- 5A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, G. Ceder, Comput. Mater. Sci. 2011, 50, 2295–2310.
- 6G. Hautier, A. Jain, S. P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, Chem. Mater. 2011, 23, 3495–3508.
- 7J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207–8215.
- 8J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2006, 124.
- 9J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Angyan, J. Chem. Phys. 2006, 124, 154709.
- 10F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, G. Ceder, Phys. Rev. B 2004, 70.
- 11D. H. Seo, A. Urban, G. Ceder, Phys. Rev. B 2015, 92.
- 12D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 2008, 128, 134106.
- 13G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901–9904.
- 14Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039–46.
- 15K. Ushirogata, K. Sodeyama, Y. Okuno, Y. Tateyama, J. Am. Chem. Soc. 2013, 135, 11967–74.
- 16K. Ushirogata, K. Sodeyama, Z. Futera, Y. Tateyama, Y. Okunoa, J. Electrochem. Soc. 2015, 162, A 2670-A2678.
- 17O. Borodin, L. M. Suo, M. Gobet, X. M. Ren, F. Wang, A. Faraone, J. Peng, M. Olguin, M. Schroeder, M. S. Ding, E. Gobrogge, A. V. Cresce, S. Munoz, J. A. Dura, S. Greenbaum, C. S. Wang, K. Xu, ACS Nano 2017, 11, 10462–10471.
- 18O. Borodin, X. M. Ren, J. Vatamanu, A. V. Cresce, J. Knap, K. Xu, Acc. Chem. Res. 2017, 50, 2886–2894.
- 19M. Okoshi, C. P. Chou, H. Nakai, J. Phys. Chem. B 2018, 122, 2600–2609.
- 20J. Reed, G. Ceder, Chem. Rev. 2004, 104, 4513–33.
- 21P. Barpanda, G. Oyama, S. Nishimura, S. C. Chung, A. Yamada, Nat. Commun. 2014, 5, 4358.
- 22J. M. Clark, S. i. Nishimura, A. Yamada, M. S. Islam, Angew. Chem. Int. Ed. 2012, 51, 13149–13153.
- 23H. Koga, L. Croguennec, M. Ménétrier, P. Mannessiez, F. Weill, C. Delmas, J. Power Sources 2013, 236, 250–258.
- 24M. Sathiya, G. Rousse, K. Ramesha, C. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, Nat. Mater. 2013, 12, 827.
- 25N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, Proc. Natl. Acad. Sci. USA 2015, 112, 7650–7655.
- 26C. Ma, J. Alvarado, J. Xu, R. l. J. Clément, M. Kodur, W. Tong, C. P. Grey, Y. S. Meng, J. Am. Chem. Soc. 2017, 139, 4835–4845.
- 27U. Maitra, R. A. House, J. W. Somerville, N. Tapia-Ruiz, J. G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M. A. Pérez-Osorio, Nat. Chem. 2018, 10, 288.
- 28B. Mortemard de Boisse, G. Liu, J. Ma, S. Nishimura, S. C. Chung, H. Kiuchi, Y. Harada, J. Kikkawa, Y. Kobayashi, M. Okubo, A. Yamada, Nat. Commun. 2016, 7, 11397.
- 29K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684–91.
- 30M. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 2017, 9, 36463–36472.
- 31C. Zhan, Z. Yao, J. Lu, L. Ma, V. A. Maroni, L. Li, E. Lee, E. E. Alp, T. Wu, J. Wen, Nat. Energy 2017, 2, 963.
- 32M. Assadi, M. Okubo, A. Yamada, Y. Tateyama, J. Mater. Chem. A 2018, 6, 3747–3753.
- 33B. Ellis, W. Makahnouk, Y. Makimura, K. Toghill, L. Nazar, Nat. Mater. 2007, 6, 749.
- 34H. Kim, I. Park, D.-H. Seo, S. Lee, S.-W. Kim, W. J. Kwon, Y.-U. Park, C. S. Kim, S. Jeon, K. Kang, J. Am. Chem. Soc. 2012, 134, 10369–10372.
- 35A. Panigrahi, S.-i. Nishimura, T. Shimada, E. Watanabe, W. Zhao, G. Oyama, A. Yamada, Chem. Mater. 2017, 29, 4361–4366.
- 36A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194.
- 37P. Ge, M. Fouletier, Solid State Ionics 1988, 28, 1172–1175.
- 38Y. Liu, B. V. Merinov, W. A. Goddard, Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.
- 39Y. Mizutani, T. Abe, M. Inaba, Z. Ogumi, Synth. Met. 2001, 125, 153–159.
- 40D. Stevens, J. Dahn, J. Electrochem. Soc. 2001, 148, A 803-A811.
- 41P.-c. Tsai, S.-C. Chung, S.-k. Lin, A. Yamada, J. Mater. Chem. A 2015, 3, 9763–9768.
- 42M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253.
- 43M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502–1505.
- 44M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.
- 45B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.
- 46M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Acc. Chem. Res. 2018, 51, 591–599.
- 47X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Nat. Commun. 2015, 6, 6544.
- 48X. Wang, X. Shen, Y. Gao, Z. Wang, R. Yu, L. Chen, J. Am. Chem. Soc. 2015, 137, 2715–2721.
- 49Y. Xie, Y. Dall'Agnese, M. Naguib, Y. Gogotsi, M. W. Barsoum, H. L. Zhuang, P. R. Kent, ACS Nano 2014, 8, 9606–9615.
- 50Y. Dall'Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Phys. Chem. Lett. 2015, 6, 2305–2309.
- 51S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, A. Yamada, ACS Nano 2016, 10, 3334–41.
- 52Y. Yamada, A. Yamada, J. Electrochem. Soc. 2015, 162, A 2406-A2423.
- 53Y. Yamada, C. H. Chiang, K. Sodeyama, J. H. Wang, Y. Tateyama, A. Yamada, ChemElectroChem 2015, 2, 1687–1694.
- 54K. Takada, Y. Yamada, E. Watanabe, J. Wang, K. Sodeyama, Y. Tateyama, K. Hirata, T. Kawase, A. Yamada, ACS Appl. Mater. Interfaces 2017, 9, 33802–33809.
- 55E.-G. Shim, T.-H. Nam, J.-G. Kim, H.-S. Kim, S.-I. Moon, Electrochim. Acta 2009, 54, 2276–2283.
- 56K. Xu, Chem. Rev. 2014, 114, 11503–11618.
- 57J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2017, 3, 22–29.
- 58K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, J. Phys. Chem. C 2014, 118, 14091–14097.
- 59Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 1.