Compressive sensing-based data loss recovery in the feedback channel of the structural vibration control systems
Corresponding Author
Fereidoun Amini
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Correspondence
Fereidoun Amini, College of Civil Engineering, Iran University of Science and Technology, Farjam St., Narmak, PO Box 1684613114, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorYousef Hedayati
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorSeyed Mohammad Javadi
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Fereidoun Amini
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Correspondence
Fereidoun Amini, College of Civil Engineering, Iran University of Science and Technology, Farjam St., Narmak, PO Box 1684613114, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorYousef Hedayati
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorSeyed Mohammad Javadi
College of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
Search for more papers by this authorSummary
The resiliency of the communication channels to data loss is of prime importance in the networked control of civil structures. In this study, compressive sensing (CS) as an emerging data acquisition technique is used to recover the lost packets in real-time in the communication channel from sensors to the controller. The basic idea is to apply CS to the state vector, for example, displacement and velocity profile of the building, in the feedback channel of the closed-loop control system. The encoded measurement vector is first packetized and then transmitted over the unreliable communication channel. On the controller side, rather than waiting for the unreceived packets to be received, the state vector is recovered using the partially observed data. Dictionary learning is used to train the sparsifying dictionary via the application-specific data set. In addition, the smoothed zero norm (SL-0) algorithm is employed for solving the underdetermined system of linear equations at the decoding stage. This approach is fully data-driven and does not require knowledge of the system. Once the state vector is reconstructed, any state feedback control strategy can be used to calculate the required control force. In this study, a 76-story benchmark building equipped with an active tuned mass damper (ATMD) is used to investigate the performance of the proposed data transmission scheme. The reconstruction accuracy of the signals is compared to the K-nearest neighbor (KNN) method and the perfect communication case. Simulation results revealed that the CS-based approach yields high accuracy with reasonable computational time.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon request.
REFERENCES
- 1Aly AM, Abburu S. On the design of high-rise buildings for multihazard: fundamental differences between wind and earthquake demand. Shock Vib. 2015; 2015: 1-22. doi:10.1155/2015/148681
- 2Connor JJ. Introduction to Structural Motion Control. Pearson Education, Inc; 2003.
- 3Spencer BF, Nagarajaiah S. State of the art of structural control. J Struct Eng. 2003; 129(7): 845-856. doi:10.1061/(ASCE)0733-9445(2003)129:7(845)
- 4Saeed TE, Nikolakopoulos G, Jonasson J, Hedlund H. A state-of-the-art review of structural control systems. J Vib Control. 2015; 21(5): 919-937. doi:10.1177/1077546313478294
- 5Frahm H. Device for damping vibrations of bodies. U.S. Patent 989958. 1909.
- 6Chung L-L, Lai Y-A, Walter Yang C-S, Lien K-H, Wu L-Y. Semi-active tuned mass dampers with phase control. J Sound Vib. 2013; 332(15): 3610-3625. doi:10.1016/j.jsv.2013.02.008
- 7Kaveh A, Javadi SM, Moghanni RM. Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm. Structure. 2020; 28: 2704-2713. doi:10.1016/j.istruc.2020.11.002
- 8Soto MG, Adeli H. Tuned mass dampers. Arch Comput Methods Eng. 2013; 20(4): 419-431. doi:10.1007/s11831-013-9091-7
- 9Amini F, Tourani N, Ghaderi P. Performance evaluation of phase-controlled semiactive resettable TMD (PCRTMD) with the stiffness retuning ability under strong seismic motions. Struct des Tall Spec Build. 2018; 27(16): 1-16. doi:10.1002/tal.1502
- 10Zhang B-L, Han Q-L, Zhang X-M. Recent advances in vibration control of offshore platforms. Nonlinear Dyn. 2017; 89(2): 755-771. doi:10.1007/s11071-017-3503-4
- 11Cao H, Li QS. New control strategies for active tuned mass damper systems. Comput Struct. 2004; 82(27): 2341-2350. doi:10.1016/j.compstruc.2004.05.010
- 12Zhang B, Han Q. Network-based modelling and active control for offshore steel jacket platform with TMD mechanisms. J Sound Vib. 2014; 333(25): 6796-6814. doi:10.1016/j.jsv.2014.08.007
- 13Yang P, Feng J, Fu X, Xu C, Wang J. Controlling the multi-plant networked system with external perturbations via adaptive model-based event-triggered strategy. Asian J Control. 2021; 23(1): 265-278. doi:10.1002/asjc.2182
- 14Gupta RA, Chow M-Y. Networked control system: overview and research trends. IEEE Trans Ind Electron. 2010; 57(7): 2527-2535. doi:10.1109/TIE.2009.2035462
- 15Li H, Shi Y. Network-based predictive control for constrained nonlinear systems with two-channel packet dropouts. IEEE Trans Ind Electron. 2014; 61(3): 1574-1582. doi:10.1109/TIE.2013.2261039
- 16Zhang X, Han Q, Yu X. Survey on recent advances in networked control systems. IEEE Trans Ind Informatics. 2016; 12(5): 1740-1752. doi:10.1109/TII.2015.2506545
- 17Tang Z, Park JH, Lee TH. Dynamic output-feedback-based H∞ design for networked control systems with multipath packet dropouts. Appl Math Comput. 2016; 275: 121-133. doi:10.1016/j.amc.2015.11.041
- 18Zhang BW, Branicky MS, Phillips SM. Stability of networked control systems. IEEE Control Syst Mag. 2001; 21(1): 84-99. doi:10.1109/37.898794
- 19Peng C, Tian Y. Robust H∞ control of networked control systems with parameter uncertainty and state-delay. Eur J Control. 2006; 12(5): 471-480. doi:10.3166/ejc.12.471-480
- 20Tian Y, Levy D. Compensation for control packet dropout in networked control systems. Inf Sci (Ny). 2008; 178(5): 1263-1278. doi:10.1016/j.ins.2007.10.012
- 21Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006; 52(4): 1289-1306. doi:10.1109/TIT.2006.871582
- 22Candes E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies ? IEEE Trans Inf Theory. 2006; 52(12): 5406-5425. doi:10.1109/TIT.2006.885507
- 23Bao Y, Beck JL, Li H. Compressive sampling for accelerometer signals in structural health monitoring. Struct Heal Monit. 2011; 10(3): 235-246. doi:10.1177/1475921710373287
- 24Bao Y, Yu Y, Li H, Jiao W, Zou Z, Ou J. Compressive sensing-based lost data recovery of fast-moving wireless sensing for structural health monitoring. Struct Control Heal Monit. 2014; 22(3): 433-448. doi:10.1002/stc.1681
- 25Zou Z, Bao Y, Li H, Spencer BF, Ou J. Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sens J. 2014; 15(2): 797-808. doi:10.1109/JSEN.2014.2353032
- 26Bao Y, Li H, Sun X, Yu Y, Ou J. Compressive sampling based data loss recovery for wireless sensor networks used in civil structural health monitoring. Struct Heal Monit. 2013; 12(1): 78-95. doi:10.1177/1475921712462936
- 27Amini F, Hedayati Y, Zanddizari H. Exploiting the inter-correlation of structural vibration signals for data loss recovery: a distributed compressive sensing based approach. Mech Syst Signal Process. 2021; 152:1-25. doi:10.1016/j.ymssp.2020.107473
- 28Yang Y, Nagarajaiah S. Output-only modal identification by compressed sensing: non-uniform low-rate random sampling. Mech Syst Signal Process. 2015; 56: 15-34. doi:10.1016/j.ymssp.2014.10.015
- 29Yao R, Pakzad SN, Venkitasubramaniam P. Compressive sensing based structural damage detection and localization using theoretical and metaheuristic statistics. Struct Control Heal Monit. 2017; 24(4):1-14. doi:10.1002/stc.1881
- 30Mascarenas D, Cattaneo A, Theiler J, Farrar C. Compressed sensing techniques for detecting damage in structures. Struct Heal Monit. 2013; 12(4): 325-338. doi:10.1177/1475921713486164
- 31Wang Y, Hao H. Damage identification scheme based on compressive sensing. J Comput Civ Eng. 2015; 29(2): 1-10. doi:10.1061/(ASCE)CP.1943-5487.0000324
10.1061/(ASCE)CP.1943?5487.0000324 Google Scholar
- 32Yang Y, Nagarajaiah S. Robust data transmission and recovery of images by compressed sensing for structural health diagnosis. Struct Control Heal Monit. 2017; 24(1):1-15. doi:10.1002/stc.1856
- 33Haupt J, Bajwa WU, Rabbat M, Nowak R. Compressed sensing for networked data. IEEE Signal Process Mag. 2008; 25(2): 92-101. doi:10.1109/MSP.2007.914732
- 34Bhattacharya S, Başar T. Sparsity based feedback design: a new paradigm in opportunistic sensing. In: Proceedings of the 2011 American Control Conference. San Francisco, CA, USA: IEEE. 2011; 3704-3709. doi:10.1109/ACC.2011.5991014
- 35Bhattacharya S, Warnell G, Chellappa R, Başar T. Vision-guided feedback control of a mobile robot with compressive measurements and side information. In: 2014 American Control Conference. Portland, OR, USA: IEEE. 2014; 97-102. doi:10.1109/ACC.2014.6859354
- 36Li Z, Xu Y, Huang H, Misra S. Sparse control and compressed sensing in networked switched systems. Sparse Control Compress Sens Networked Switch Syst. 2016; 10(9): 1078-1087. doi:10.1049/iet-cta.2015.1330
10.1049/iet?cta.2015.1330 Google Scholar
- 37Xu Y, Yang Z, Zhang J, Fei Z, Liu W. Real-time compressive sensing based control strategy for a multi-area power system. IEEE Trans Smart Grid. 2017; 9(5): 4293-4302. doi:10.1109/TSG.2017.2654253
- 38Aharon M, Elad M, Bruckstein AK. SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process. 2006; 54(11): 4311-4322. doi:10.1109/TSP.2006.881199
- 39Sousa H, Wang Y. Sparse representation approach to data compression for strain-based traffic load monitoring: a comparative study. Measurement. 2018; 122: 630-637. doi:10.1016/j.measurement.2017.10.042
- 40Amini F, Hedayati Y, Zanddizari H. Determining the number of measurements for compressive sensing of traffic-induced vibration data. Measurement. 2020; 152:1-14,107259. doi:10.1016/j.measurement.2019.107259
- 41Mohimani GH, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed 0 norm. IEEE Trans Signal Process. 2009; 57(1): 289-301. doi:10.1109/TSP.2008.2007606
- 42Yang JN, Agrawal AK, Samali B, Wu J. Benchmark problem for response control of wind-excited tall buildings. J Eng Mech. 2004; 130(4): 437-446. doi:10.1061/(ASCE)0733-9399(2004)130:4(437)
- 43Longarini N, Cabras L, Zucca M, Chapain S, Aly AM. Structural improvements for tall buildings under wind loads: comparative study. Shock Vib. 2017; 2017: 1-19. doi:10.1155/2017/2031248
- 44Samali B, Kwok KCS, Wood GS, Yang JN. Wind tunnel tests for wind-excited benchmark building. J Eng Mech. 2004; 130(4): 447-450. doi:10.1061/(ASCE)0733-9399(2004)130:4(447)
- 45Schenato L. To zero or to hold control inputs with lossy links? IEEE Trans Automat Contr. 2009; 54(5): 1093-1099. doi:10.1109/TAC.2008.2010999
- 46Tillmann AM, Pfetsch ME. The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans Inf Theory. 2014; 60(2): 1248-1259. doi:10.1109/TIT.2013.2290112
10.1109/TIT.2013.2290112 Google Scholar
- 47Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008; 25(2): 21-30. doi:10.1109/MSP.2007.914731
- 48Baraniuk R, Davenport M, Devore R, Wakin M. A simple proof of the restricted isometry property for random matrices. Constr Approx. 2008; 28(3): 253-263. doi:10.1007/s00365-007-9003-x
- 49Rubinstein BR, Bruckstein AM, Elad M. Dictionaries for sparse representation modeling. Proc IEEE. 2010; 98(6): 1045-1057. doi:10.1109/JPROC.2010.2040551
- 50 The K-SVD algorithm. http://www.cs.technion.ac.il/~ronrubin/software.html#
- 51Mohimani H, Babaie Zadeh M, Jutten C. SL0 algorithm. http://ee.sharif.edu/~SLzero/. Accessed June 22, 2014.
- 52Basu B, Nagarajaiah S. A wavelet-based time-varying adaptive LQR algorithm for structural control. Eng Struct. 2008; 30(9): 2470-2477. doi:10.1016/j.engstruct.2008.01.011
- 53Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001; 17(6): 520-525. doi:10.1093/bioinformatics/17.6.520
- 54Kim K, Kim B, Yi G. Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics. 2004; 5(160): 1-9. doi:10.1186/1471-2105-5-160
- 55Yazicigil RT, Haque T, Kinget PR, Wright J. Taking compressive sensing to the hardware level. IEEE Signal Process Mag. 2019; 36(2): 81-100. doi:10.1109/MSP.2018.2880837
- 56Stanislaus JLVM, Mohsenin T. Low-complexity FPGA implementation of compressive sensing reconstruction. In: 2013 International Conference on Computing, Networking and Communications (ICNC). IEEE. 2013; 671-675. doi:10.1109/ICCNC.2013.6504167
- 57Li L, Liu H, Zhou H, Zhang C. Missing data estimation method for time series data in structure health monitoring systems by probability principal component analysis. Adv Eng Softw. 2020; 149: 1-13, 102901. doi:10.1016/j.advengsoft.2020.102901
- 58Li L, Zhang J, Yang F, Ran B. Robust and flexible strategy for missing data imputation in intelligent transportation system. IET Intell Transp Syst. 2018; 12(2): 151-157. doi:10.1049/iet-its.2017.0273