Carbon Electrode Endows High-Efficiency Perovskite Photovoltaics Affordable, Fully Printable, and Durable
Gengling Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Tian Tian
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJianyu Yang
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJun-Xing Zhong
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dilbara Gulamova
Materials Science Institute, SPA “Physics-Sun”, Uzbekistan Academy of Sciences, 100084 Uzbekistan
Search for more papers by this authorCorresponding Author
Wu-Qiang Wu
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorGengling Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Tian Tian
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJianyu Yang
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJun-Xing Zhong
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Dilbara Gulamova
Materials Science Institute, SPA “Physics-Sun”, Uzbekistan Academy of Sciences, 100084 Uzbekistan
Search for more papers by this authorCorresponding Author
Wu-Qiang Wu
Key Laboratory of Bioinorganic and Synthetic Chemistry (MoE), Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
Perovskite photovoltaics have witnessed overwhelming success over the past decade. Carbon-based perovskite solar cells (C-PSCs), using carbon materials as electrodes, make the perovskite photovoltaics more attractive than ever. Since its first launch in 2013, the development of state-of-the-art C-PSCs has made remarkable achievements in various aspects. Herein, the recent ground-breaking advancement of C-PSCs has been summarized, with a particular focus on highlighting the unique advantages of carbon electrodes that enable perovskite photovoltaics affordable, fully printable, and durable. Limitations and challenges associated with C-PSCs are discussed. An insightful perspective regarding future research directions is provided, revolutionizing the pathway toward new-generation photovoltaics and optoelectronics.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 2 V. Adinolfi, W. Peng, G. Walters, O. M. Bakr, E. H. Sargent, Adv. Mater. 2018, 30, 1700764.
- 3 J.F. Liao, W. Q. Wu, Y. Jiang, J. X. Zhong, L. Wang, D.B. Kuang, Chem. Soc. Rev. 2019, 49, 354.
- 4
H. Kanda, V. D. Mihailetchi, M.-E. G. Farret, J.-P. Kleider, Z. Djebbour, J. Alvarez, B. Philippe, O. Isabella, M. R. Vogt, R. Santbergen, P. Schulz, F. Peter, M. K. Nazeeruddin, J. P. Connolly, Interdiscipl. Mater. 2022, 1, 148.
10.1002/idm2.12006 Google Scholar
- 5
Y. Mo, C. Wang, X. Zheng, P. Zhou, J. Li, X. Yu, K. Yang, X. Deng, H. Park, F. Huang, Y.-B. Cheng, Interdiscipl. Mater. 2022, https://doi.org/10.1002/idm2.12022.
10.1002/idm2.12022 Google Scholar
- 6 NREL, National Renewable Energy Laboratory Best Research Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency. (accessed: April 2022).
- 7 H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee, K. Lee, Energy Environ. Sci. 2016, 9, 1258.
- 8 W. Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, Nat. Commun. 2019, 9, 1.
- 9 W. Q. Wu, J. F. Liao, J. X. Zhong, Y. F. Xu, L. Wang, J. Huang, Angew. Chem., Int. Ed. 2020, 132, 21166.
- 10 W. Feng, J. F. Liao, M. Yang, J. X. Zhong, B. X. Lei, L. Ding, W. Q. Wu, Sol. RRL 2021, 5, 2000664.
- 11 M. Hadadian, J. H. Smått, J. C. Baena, Energy Environ. Sci. 2020, 13, 1377.
- 12 G. Tong, T. Chen, H. Li, W. Song, Y. Chang, J. Liu, L. Yu, J. Xu, Y. Qi, Y. Jiang, Sol. RRL 2019, 3, 1900030.
- 13 Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Sci. Rep. 2013, 3, 1.
- 14 C. Zhang, S. Liang, W. Liu, F. T. Eickemeyer, X. Cai, K. Zhou, J. Bian, H. Zhu, C. Zhu, N. Wang, Z. Wang, J. Zhang, Y. Wang, J. Hu, H. Ma, C. Xin, S. M. Zakeeruddin, M. Grätzel, Y. Shi, Nat. Energy 2021, 6, 1154.
- 15 H. Zhang, Y. Li, S. Tan, Z. Chen, K. Song, S. Huang, J. Shi, Y. Luo, D. Li, Q. Meng, J. Colloid Interface Sci. 2022, 608, 3151.
- 16 C. Zhang, M. Chen, F. Fu, H. Zhu, T. Feurer, W. Tian, C. Zhu, K. Zhou, S. Jin, S. M. Zakeeruddin, A.y. N. Tiwari, N. P. Padture, M. Grätzel, Y. Shi, Energy Environ. Sci. 2022, 15, 1536.
- 17 A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong, W. Zhang, S. Luo, G. Na, C. Tian, X. Hou, Y. Xiong, Z. Zhang, S. Liu, S. Uchida, T. W. Kim, Y. Yuan, L. Zhang, Y. Zhou, H. Han, Joule 2020, 4, 2646.
- 18 R. L. McCreery, Chem. Rev. 2008, 108, 2646.
- 19 T. Ye, Y. Hou, A. Nozariasbmarz, D. Yang, J. Yoon, L. Zheng, K. Wang, K. Wang, S. Ramakrishna, S. Priya, ACS Energy Lett. 2021, 6, 3044.
- 20 C. Zhang, S. Wang, H. Zhang, Y. Feng, W. Tian, Y. Yan, J. Bian, Y. Wang, S. Jin, S. M. Zakeeruddin, M. Grätzel, Y. Shi, Energy Environ. Sci. 2019, 12, 3585.
- 21 J. Du, J. Duan, X. Yang, Y. Duan, Q. Zhou, Q. Tang, Angew. Chem., Int. Ed. 2021, 60, 10608.
- 22 H. Chen, S. Yang, Adv. Mater. 2017, 29, 1603994.
- 23 H. Chen, S. Yang, J. Mater. Chem. A 2019, 7, 15476.
- 24 S. Maniarasu, T. B. Korukonda, V. Manjunath, E. Ramasamy, M. Ramesh, G. Veerappan, Renew. Sustain. Energy Rev. 2018, 82, 845.
- 25 J. Duan, Y. Zhao, B. He, Q. Tang, Small 2018, 14, 1704443.
- 26 L. Wang, S. Yang, Q. Han, F. Yu, H. Zhang, X. Cai, C. Zhang, L. Gao, T. Ma, ChemSusChem 2021, 14, 4776.
- 27 Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren, X. Dai, Z. Yao, Y. Zhou, L. Xiang, H. Du, H. He, N. Wang, K. Jiang, H. Lin, H. Zhang, Z. Guo, Adv. Funct. Mater. 2018, 18, 1706777.
- 28 A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295.
- 29 D. Zhang, P. Jiang, D. Li, S. Li, J. Qi, X. Wang, Y. Hu, Y. Rong, A. Mei, H. Han, Sol. RRL 2022, 6, 2100851.
- 30 X. Chen, Y. Xia, Z. Zheng, X. Xiao, C. Ling, M. Xia, Y. Hu, A. Mei, R. Cheacharoen, Y. Rong, H. Han, Chem. Mater. 2022, 34, 728.
- 31 X. Chen, Y. Xia, Q. Huang, Z. Li, A. Mei, Y. Hu, T. Wang, R. Cheacharoen, Y. Rong, H. Han, Adv. Energy Mater. 2021, 11, 2100292.
- 32 J. Du, C. Qiu, S. Li, W. Zhang, W. Zhang, Y. Wang, Z. Qiu, Q. Wang, K. Yang, A. Mei, Y. Rong, Y. Hu, H. Han, Adv. Energy Mater. 2021, 12, 2102229.
- 33 W. Q. Wu, P. N. Rudd, Q. Wang, Z. Yang, J. Huang, Adv. Mater. 2020, 32, 2000995.
- 34
T. Tian, J. X. Zhong, M. Yang, W. Feng, C. Zhang, W. Zhang, Y. Abdi, L. Wang, B. X. Lei, W. Q. Wu, Angew. Chem., Int. Ed. 2021, 133, 23928.
10.1002/ange.202108495 Google Scholar
- 35 H. Zhang, J. Xiao, J. Shi, H. Su, Y. Luo, D. Li, H. Wu, Y.-B. Cheng, Q. Meng, Adv. Funct. Mater. 2018, 28, 1802985.
- 36 B. Philippe, B.W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E. M. J. Johansson, H. Rensmo, Chem. Mater. 2015, 27, 1720.
- 37 N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S. A. Haque, Angew. Chem., Int. Ed. 2015, 54, 8208.
- 38 H. S. Kim, J. Y. Seo, N. G. Park, ChemSusChem 2016, 9, 2528.
- 39 L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao, C. Shi, S. Zhang, J. Wu, H. Zhong, M. Sui, H. Zhou, H. Jin, Y. Li, Q. Chen, Adv. Mater. 2018, 30, 1800544.
- 40 L. L. Jiang, Z. K. Wang, M. Li, C. C. Zhang, Q. Q. Ye, K. H. Hu, D. Z. Lu, P. F. Fang, L. S. Liao, Adv. Funct. Mater. 2018, 28, 1705875.
- 41 J. W. Lee, Z. Dai, T. H. Han, C. Choi, S. Y. Chang, S. J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, Nat. Commun. 2018, 9, 3021.
- 42 G. Zhang, P. Xie, Z. Huang, Z. Yang, Z. Pan, Y. Fang, H. Rao, X. Zhong, Adv. Funct. Mater. 2021, 31, 2011187.
- 43 M. Que, B. Zhang, J. Chen, X. Yin, S. Yun, Mater. Adv. 2021, 2, 5560.