Ultrafast Random-Pyramid Texturing for Efficient Monocrystalline Silicon Solar Cells
Lei Zhu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Shuai Zou
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorMengfei Ni
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorJianming Ding
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorChengkun Wu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZheng Lu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorYulian Zeng
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorXiaoya Ye
Research & Development Department, Canadian Solar Inc., Suzhou, 215129 China
Search for more papers by this authorXusheng Wang
Research & Development Department, Canadian Solar Inc., Suzhou, 215129 China
Search for more papers by this authorRonglei Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorHua Sun
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorBaochen Liao
School of Information Science and Technology, Nantong University, Nantong, 226019 China
Search for more papers by this authorYadong Xu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorMingrong Shen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Xiaodong Su
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorLei Zhu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Shuai Zou
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorMengfei Ni
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorJianming Ding
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorChengkun Wu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorZheng Lu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorYulian Zeng
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorXiaoya Ye
Research & Development Department, Canadian Solar Inc., Suzhou, 215129 China
Search for more papers by this authorXusheng Wang
Research & Development Department, Canadian Solar Inc., Suzhou, 215129 China
Search for more papers by this authorRonglei Fan
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorHua Sun
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorBaochen Liao
School of Information Science and Technology, Nantong University, Nantong, 226019 China
Search for more papers by this authorYadong Xu
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorMingrong Shen
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Xiaodong Su
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006 China
Search for more papers by this authorAbstract
Herein, an ultrafast random-pyramid texturing process is proposed for monocrystalline silicon (mono-Si) solar cells by combining metal-catalyzed chemical etching (MCCE) and the standard alkaline texturing process. Namely, large numbers of artificial defects are introduced on the wafer surface in 3 min by MCCE; therefore, the process duration of alkaline texturing is largely shortened from 420 s for the as-cut wafer to 180 s for the wafer with artificial defects due to its high surface reactivity. Moreover, those tiny artificial defects are apt to form small pyramids, resulting in a better light-trapping performance. As a demonstration, the passivated emitter rear contact solar cell with ultrafast random pyramid texture achieves a power conversion efficiency of 23.02%. Therefore, such a cost-effective ultrafast texturing strategy can open a promising new route toward the mass production of high-efficiency industrial mono-Si solar cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200204-sup-0001-SuppData-S1.pdf533.8 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 ITRPV Consortium, International Technology Roadmap for Photovoltaic, https://itrpv.vdma.org/.(accessed: October 2021).
- 2Y. Q. Liu, Y. J. Li, Y. L. Wu, G. T. Yang, L. Mazzarella, P. Procel-Moya, Adele C. Tamboli, K. Weber, M. Boccard, O. Isabella, X. B. Yang, B. Q. Sun, Mater. Sci. Eng. R. 2020, 142, 100579.
- 3L. Song, Z. Hu, L. Fang, Y. Cai, S. He, H. Huang, W. C. Hsu, X. Yu, D. Yang, Sol. RRL 2021, 5, 2100738.
- 4W. Z. Shen, Y. X. Zhao, F. Liu, Front. Energy 2022 https://doi.org/10.1007/s11708-022-0816-x.
- 5N. Bachtouli, S. Aouida, R. Hadj Laajimi, M. F. Boujmil, B. Bessais, Appl. Surf. Sci. 2012, 258, 8889.
- 6S. Lqbal, D. Su, H. L. Zhou, T. Zhang, Silicon 2020, 12, 773.
- 7E. Vazsonyi, K. D. Clercq, R. Einhaus, E. V. Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Sol. Energy Mater. Sol. Cells 1999, 57, 179.
- 8I. Zubel, K. Rola, M. Kramkowska, Sens. Actuators, A 2011, 171, 436.
- 9Z. Q. Xi, D. R. Yang, W. Dan, C. Jun, X. H. Li, D. L. Que, Renewable Energy 2004, 29, 2101.
- 10J. M. Kim, Y. K. Kim, Sol. Energy Mater. Sol. Cells 2004, 81, 239.
- 11P. K. Basu, D. Sarangi, K. D. Shetty, M. B. Boreland, Sol. Energy Mater. Sol. Cells 2013, 113, 37.
- 12A. K. Chu, J. S. Wang, Z. Y. Tsai, C. K. Lee, Sol. Energy Mater. Sol. Cells 2009, 93, 1276.
- 13L. F. Sun, J. Y. Tang, Appl. Surf. Sci. 2009, 255, 9301.
- 14A. M. Santana, E. J. Rodríguez, B. G. Díaz, D. Borchert, R. G. Lemus, Prog. Photovoltaics 2012, 20, 91.
- 15H. H. Li, W. F. Liu, A. M. Liu, F. Qiao, Z. Q. Hu, Y. T. Liu, Sol. Energy Mater. Sol. Cells 2010, 94, 942.
- 16Y. X. Zhang, B. L. Wang, X. P. Li, Z. B. Gao, Y. Zhou, M. H. Li, D. N. Zhang, K. Tao, S. Jiang, H. Y. Ge, S. Q. Xiao, R. Jia, Sol. Energy Mater. Sol. Cells 2021, 222, 110947.
- 17X. Y. Ye, S. Zou, K. X. Chen, J. J. Li, J. Huang, F. Cao, X. S. Wang, L. J. Zhang, X. F. Wang, M. R. Shen, X. D. Su, Adv. Funct. Mater. 2014, 24, 6708.
- 18S. Zou, X. Y. Ye, C. K. Wu, K. X. Cheng, L. Fang, R. J. Tang, M. R. Shen, X. S. Wang, X. D. Su, Prog. Photovoltaics Res. Appl. 2019, 27, 511.
- 19C. K. Wu, S. Zou, J. Y. Zhu, X. Y. Ye, J. M. Ding, H. Sun, X. S. Wang, G. Q. Xing, X. H. Zhang, X. D. Su, Prog. Photovoltaics Res. Appl. 2020, 28, 788.
- 20W. S. Liang, T. Kho, J. N. Tong, P. Narangari, S. Armand, M. Ernst, D. Walter, S. Surve, M. Stocks, A. Blakers, K. C. Fong, Sol. Energy Mater. Sol. Cells 2021, 222, 110909.
- 21S. Zou, L. Xu, C. K. Wu, J. M. Ding, L. Zhu, H. Sun, X. Y. Ye, X. S. Wang, X. H. Zhang, X. D. Su, Sol. Energy Mater. Sol. Cells 2021, 227, 111104.
- 22S. Y. Li, W. H. Ma, Y. Zhou, X. H. Chen, Y. Y. Xiao, M. Y. Ma, W. J. Zhu, F. Wei, Nanoscale Res. Lett. 2014, 9, 196.
- 23M. Richter, P. Saint-Cast, T. Dannenberg, M. Zimmer, J. Rentsch, Energy Procedia 2015, 77, 832.
- 24X. G. Liu, P. R. Coxon, M. Peters, B. Hoex, J. M. Cole, D. J. Fray, Energy Environ. Sci. 2014, 7, 3223.
- 25Y. Wang, Y. P. Liu, L. X. Yang, W. Chen, X. L. Du, A. Kuznetsov, Nanoscale 2017, 9, 907.
- 26J. L. Yang, H. L. Shen, L. H. Sun, Mater. Sci. Semicond. Process. 2019, 94, 1.
- 27A. Richter, S. W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B. 2012, 86, 165202.
- 28M. Ju, N. Balaji, C. Park, H. T. T. Nguyen, J. Cui, D. Oh, M. Jeon, J. Kang, G. Shim, J. Yi, RSC. Adv. 2016, 6, 49831.
- 29K. Singh, M. Nayak, S. Mudgal, S. Singh, V. K. Komarala, Sol. Energy 2019, 183, 469.
- 30J. Q. Wang, F. Q. Zhong, H. Liu, L. Zhao, W. J. Wang, X. X. Xu, Y. Z. Zhang, Sol. Energy 2021, 221, 114.
- 31P. K. Basu, A. Khanna, Z. Hameiri, Renewable Energy 2015, 78, 590.
- 32A. Khanna, P. K. Basu, A. Filipovic, V. Shanmugam, C. Schmiga, A. G. Aberle, T. Mueller, Sol. Energy Mater. Sol. Cells 2015, 132, 589.
- 33E. Cabrere, S. Olibet, J. Glatz-Reichenbach, R. Kopecek, D. Reinke, G. Schubert, J. Appl. Phys. 2011, 110, 114511.