Slow Hole Transfer Kinetics Lead to High Blend Photoluminescence of Unfused A–D–A′–D–A-Type Acceptors with Unfavorable Highest Occupied Molecular Orbitals Offset
Xinhui Zou
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorHan Yu
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorZhenyu Qi
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorBin Liu
Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorZengshan Xing
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorChristopher C. S. Chan
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorPhilip C. Y. Chow
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Ding Pan
Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
He Yan
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Kam Sing Wong
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorXinhui Zou
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorHan Yu
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorZhenyu Qi
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorBin Liu
Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorZengshan Xing
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorChristopher C. S. Chan
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorPhilip C. Y. Chow
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Ding Pan
Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
He Yan
Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Kam Sing Wong
Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, P. R. China
Search for more papers by this authorAbstract
Nonfullerene organic photovoltaics (OPVs) with small energetic offset between donor and acceptor can provide a much-reduced voltage loss and power conversion efficiencies over 18%, challenging the previous understanding of the charge generation mechanisms. Herein, a study is presented on nonfullerene OPVs with negative energetic offsets, by investigating a model system which exhibits poor photoluminescence quenching (PLQ, ≈17%) yet reasonably high external quantum efficiency (EQE, ≈50%). It is found that the discrepancy between the poor PLQ and relatively high EQE is dependent on the measurement conditions, namely, short or open circuit, under which the devices exhibit differences in charge generation. Transient absorption spectroscopy shows surprisingly slow hole transfer on nanosecond timescale. It is revealed that the poor PLQ/high radiative recombination originates from an increased back transfer from free carriers to the singlet excitons under open circuit. It is made possible by the slow charge-transfer (CT) kinetics, long-lived CT states, and emissive excitons. Despite the negative offset, the charge generation can be relatively efficient under short circuit. The results suggest that the PLQ under open circuit is not necessarily a good indicator of charge separation efficiency and provide new insight to efficient charge generation of OPVs with unfavorable energy offsets.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200169-sup-0001-SuppData-S1.pdf1.9 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Li, C.-Z. Li, M. Shi, H. Chen, ACS Energy Lett. 2020, 5, 1554.
- 2A. J. Heeger, Adv. Mater. 2014, 26, 10.
- 3J.-L. Bredas, J. E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 2009, 42, 1691.
- 4K. Kawashima, Y. Tamai, H. Ohkita, I. Osaka, K. Takimiya, Nat. Commun. 2015, 6, 10085.
- 5K. Vandewal, Z. Ma, J. Bergqvist, Z. Tang, E. Wang, P. Henriksson, K. Tvingstedt, M. R. Andersson, F. Zhang, O. Inganäs, Adv. Funct. Mater. 2012, 22, 3480.
- 6S. M. Menke, N. A. Ran, G. C. Bazan, R. H. Friend, Joule 2018, 2, 25.
- 7C. Xu, K. Jin, Z. Xiao, Z. Zhao, X. Ma, X. Wang, J. Li, W. Xu, S. Zhang, L. Ding, F. Zhang, Adv. Funct. Mater. 2021, 31, 2107934.
- 8Z. Hu, L. Yang, W. Gao, J. Gao, C. Xu, X. Zhang, Z. Wang, W. Tang, C. Yang, F. Zhang, Small 2020, 16, 2000441.
- 9Y. Wang, F. Wang, J. Gao, Y. Yan, X. Wang, X. Wang, C. Xu, X. Ma, J. Zhang, F. Zhang, J. Mater. Chem. C 2021, 9, 9892.
- 10J. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Nat. Energy 2018, 3, 720.
- 11Y. Cai, H. Zhang, L. Ye, R. Zhang, J. Xu, K. Zhang, P. Bi, T. Li, K. Weng, K. Xu, J. Xia, Q. Bao, F. Liu, X. Hao, S. Tan, F. Gao, X. Zhan, Y. Sun, ACS Appl. Mater. Interfaces 2020, 12, 43984.
- 12C. Sun, S. Qin, R. Wang, S. Chen, F. Pan, B. Qiu, Z. Shang, L. Meng, C. Zhang, M. Xiao, C. Yang, Y. Li, J. Am. Chem. Soc. 2020, 142, 1465.
- 13Y. Liu, L. Zuo, X. Shi, A. K. Y. Jen, D. S. Ginger, ACS Energy Lett. 2018, 3, 2396.
- 14X. Zou, C. Ma, C. C. S. Chan, J. Zhang, Y. Li, A. Shang, Z. Wang, L. Arunagiri, Z. Qi, H. Ade, H. Yan, K. S. Wong, P. C. Y. Chow, J. Phys. Chem. C 2021, 125, 1714.
- 15G. Zhang, X. K. Chen, J. Xiao, P. C. Y. Chow, M. Ren, G. Kupgan, X. Jiao, C. C. S. Chan, X. Du, R. Xia, Z. Chen, J. Yuan, Y. Zhang, S. Zhang, Y. Liu, Y. Zou, H. Yan, K. S. Wong, V. Coropceanu, N. Li, C. J. Brabec, J. L. Bredas, H. L. Yip, Y. Cao, Nat. Commun. 2020, 11, 3943.
- 16S. Karuthedath, J. Gorenflot, Y. Firdaus, N. Chaturvedi, C. S. P. De Castro, G. T. Harrison, J. I. Khan, A. Markina, A. H. Balawi, T. A. Dela Peña, W. Liu, R. Liang, A. Sharma, S. H. K. Paleti, W. Zhang, Y. Lin, E. Alarousu, D. H. Anjum, P. M. Beaujuge, S. De Wolf, I. McCulloch, T. D. Anthopoulos, D. Baran, D. Andrienko, F. Laquai, Nat. Mater. 2021, 20, 378.
- 17L. Perdigón-Toro, L. Q. Phuong, S. Zeiske, K. Vandewal, A. Armin, S. Shoaee, D. Neher, ACS Energy Lett. 2021, 557.
10.1021/acsenergylett.0c02572 Google Scholar
- 18H. Yao, Y. Cui, D. Qian, C. S. Ponseca, A. Honarfar, Y. Xu, J. Xin, Z. Chen, L. Hong, B. Gao, R. Yu, Y. Zu, W. Ma, P. Chabera, T. Pullerits, A. Yartsev, F. Gao, J. Hou, J. Am. Chem. Soc. 2019, 141, 7743.
- 19S. M. Menke, A. Cheminal, P. Conaghan, N. A. Ran, N. C. Greehnam, G. C. Bazan, T. Q. Nguyen, A. Rao, R. H. Friend, Nat. Commun. 2018, 9, 277.
- 20F. D. Eisner, M. Azzouzi, Z. Fei, X. Hou, T. D. Anthopoulos, T. J. S. Dennis, M. Heeney, J. Nelson, J. Am. Chem. Soc. 2019, 141, 6362.
- 21X.-K. Chen, D. Qian, Y. Wang, T. Kirchartz, W. Tress, H. Yao, J. Yuan, M. Hülsbeck, M. Zhang, Y. Zou, Y. Sun, Y. Li, J. Hou, O. Inganäs, V. Coropceanu, J.-L. Bredas, F. Gao, Nat. Energy 2021, 6, 799.
- 22T. F. Hinrichsen, C. C. S. Chan, C. Ma, D. Paleček, A. Gillett, S. Chen, X. Zou, G. Zhang, H.-L. Yip, K. S. Wong, R. H. Friend, H. Yan, A. Rao, P. C. Y. Chow, Nat. Commun. 2020, 11, 5617.
- 23C. Ma, C. C. S. Chan, X. Zou, H. Yu, J. Zhang, H. Yan, K. S. Wong, P. C. Y. Chow, Sol. RRL 2021, 5, 2107157.
10.1002/solr.202000789 Google Scholar
- 24C. C. S. Chan, C. Ma, X. Zou, Z. Xing, G. Zhang, H. Yip, R. A. Taylor, Y. He, K. S. Wong, P. C. Y. Chow, Adv. Funct. Mater. 2021, 31, 2107157.
- 25I. Ramirez, M. Causa’, Y. Zhong, N. Banerji, M. Riede, Adv. Energy Mater. 2018, 8, 1703551.
- 26T. A. Dela Peña, J. I. Khan, N. Chaturvedi, R. Ma, Z. Xing, J. Gorenflot, A. Sharma, F. L. Ng, D. Baran, H. Yan, F. Laquai, K. S. Wong, ACS Energy Lett. 2021, 6, 3408.
- 27H. Yu, Z. Qi, X. Li, Z. Wang, W. Zhou, H. Ade, H. Yan, K. Chen, Sol. RRL 2021, 4, 2000421.
10.1002/solr.202000421 Google Scholar
- 28M. A. Faist, T. Kirchartz, W. Gong, R. S. Ashraf, I. McCulloch, J. C. de Mello, N. J. Ekins-Daukes, D. D. C. Bradley, J. Nelson, J. Am. Chem. Soc. 2012, 134, 685.
- 29C. Li, Q. Yue, H. Wu, B. Li, H. Fan, X. Zhu, J. Energy Chem. 2021, 52, 60.
- 30J. Zhang, W. Liu, G. Zhou, Y. Yi, S. Xu, F. Liu, H. Zhu, X. Zhu, Adv. Energy Mater. 2020, 10, 1903298.
- 31K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Nat. Mater. 2009, 8, 904.
- 32Z. Tang, J. Wang, A. Melianas, Y. Wu, R. Kroon, W. Li, W. Ma, M. R. Andersson, Z. Ma, W. Cai, W. Tress, O. Inganäs, J. Mater. Chem. A 2018, 6, 12574.
- 33D. Baran, N. Li, A. C. Breton, A. Osvet, T. Ameri, M. Leclerc, C. J. Brabec, J. Am. Chem. Soc. 2014, 136, 10949.
- 34J. Hou, O. Inganäs, R. H. Friend, F. Gao, Nat. Mater. 2018, 17, 119.
- 35S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. Van Der Poll, G. C. Bazan, R. H. Friend, Science 2014, 343, 512.
- 36S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C.-Z. Z. Li, J. Hou, Y. Li, H. Chen, J. Am. Chem. Soc. 2019, 141, 3073.
- 37A. Classen, C. L. Chochos, L. Lüer, V. G. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumüller, C. J. Brabec, Nat. Energy 2020, 5, 711.
- 38Y. Dong, H. Cha, H. L. Bristow, J. Lee, A. Kumar, P. S. Tuladhar, I. Mcculloch, A. A. Bakulin, J. R. Durrant, J. Am. Chem. Soc. 2021, 143, 7599.
- 39Y. Liu, J. Zhang, G. Zhou, F. Liu, X. Zhu, F. Zhang, J. Phys. Chem. C 2020, 124, 15132.
- 40J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103.
- 41S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.
- 42J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105.
- 43D. R. Hamann, Phys. Rev. B 2013, 88, 085117.
- 44A.-R. Allouche, J. Comput. Chem. 2011, 32, 174.
- 45A. D. Becke, J. Chem. Phys. 1998, 98, 1372.
- 46C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 47M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory Comput. 2010, 6, 2348.
- 48J. Strand, S. K. Chulkov, M. B. Watkins, A. L. Shluger, J. Chem. Phys. 2019, 150, 044702.
- 49L. Genovese, T. Deutsch, A. Neelov, S. Goedecker, G. Beylkin, J. Chem. Phys. 2006, 125, 074105.