Amino Acid-Based Low-Dimensional Management for Enhanced Perovskite Solar Cells
Yingjie Hu
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorCorresponding Author
Lili Gao
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorHang Su
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorXinyi Du
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorNingyi Yuan
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorJianning Ding
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorCorresponding Author
Jing Zhang
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorCorresponding Author
Shengzhong (Frank) Liu
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorYingjie Hu
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorCorresponding Author
Lili Gao
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorHang Su
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorXinyi Du
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorNingyi Yuan
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorJianning Ding
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou, 213164 China
Search for more papers by this authorCorresponding Author
Jing Zhang
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Search for more papers by this authorCorresponding Author
Shengzhong (Frank) Liu
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Institute for Adv. Energy Mater, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119 China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 China
Search for more papers by this authorAbstract
It has been reported that an overlayer of lower dimensional perovskite can effectively improve the properties of 3D perovskite solar cells. Here, 4-aminobutyric acid (C4I) and 6-aminocaproic acid iodides (C6I) are introduced onto the surface of the perovskite layer, forming a low-dimensional (LD) capping layer on the 3D perovskite films for high-performance devices. It is found that C4I forms a 2D perovskite layer, while C6I forms a 1D perovskite layer on the 3D perovskite surface. By using the LD capping layers, the integrated perovskite films show passivated surface traps, reduced defect density, improved carrier lifetimes, and altered band alignment, leading to improved fill factor and open-circuit voltage and, hence, significantly higher device efficiency. The devices with the C4I and C6I capping layers achieve solar cell efficiencies as high as 23.48% and 23.11%, respectively. In addition, bare devices with the C4I and C6I integration maintain 93.73% and 91.58%, respectively, of their initial efficiencies after exposure to the ambient atmosphere for 2000 h, demonstrating much better stability than the pristine 3D holding only 83.30% of its initial efficiency. It appears that this 2D capping is more suitable for enhancing 3D perovskite performance for general photoelectronic applications than the 1D capping.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202200168-sup-0001-SuppData-S1.pdf958.5 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 H. Min, D. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2021, 598, 444.
- 2 A. M. Askar, K. Shankar, J. Nanosci. Nanotechnol. 2016, 16, 5890.
- 3 L. K. Gao, X. H. Zhao, X. F. Diao, T. Y. Tang, Y. L. Tang, Acta Phys. Sin. 2021, 70, 15.
- 4 W. Tian, J. Leng, C. Zhao, S. Jin, J. Am. Chem. Soc. 2017, 139, 579.
- 5 X. M. Zhang, F. Li, R. K. Zheng, J. Mater. Chem. C 2020, 8, 13918.
- 6 K. C. Zhang, Y. H. Zhao, R. M. Duan, P. Huang, K. Zhu, Z. D. Li, B. Dong, Y. Zhou, H. F. Zhu, B. Song, Org. Electron. 2019, 68, 96.
- 7 J. Zhu, S. Park, O. Y. Gong, C. Sohn, Z. J. Li, Z. R. Zhang, B. Jo, W. Kim, G. S. Han, D. H. Kim, T. K. Ahn, J. Lee, H. S. Jung, Energy Environ. Sci. 2021, 14, 4903.
- 8 J. Tong, Z. Song, D. H. Kim, X. Chen, C. Chen, A. F. Palmstrom, P. F. Ndione, M. O. Reese, S. P. Dunfield, O. G. Reid, Science 2019, 364, 475.
- 9 G. Nagaraj, M. K. A. Mohammed, M. Shekargoftar, P. Sasikumar, P. Sakthivel, G. Ravi, M. Dehghanipour, S. Akin, A. E. Shalan, Mater Today Energy 2021, 22, 100853.
- 10 M. Pitaro, E. K. Tekelenburg, S. Y. Shao, M. A. Loi, Adv. Mater. 2021, 34, 2105844.
- 11 E. A. Alharbi, A. Krishna, T. P. Baumeler, M. Dankl, G. C. Fish, F. Eickemeyer, O. Ouellette, P. Ahlawat, V. Skorjanc, E. John, B. W. Yang, L. Pfeifer, C. E. Avalos, L. F. Pan, M. Mensi, P. A. Schouwink, J. E. Moser, A. Hagfeldt, U. Rothlisberger, S. M. Zakeeruddin, M. Gratzel, ACS Energy Lett. 2021, 6, 3650.
- 12 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
- 13 S. H. Zhang, H. Y. Wang, X. Duan, L. Rao, C. X. Gong, B. J. Fan, Z. Xing, X. C. Meng, B. Xie, X. T. Hu, Adv. Funct. Mater. 2021, 31, 2106495.
- 14 M. R. Azani, A. Hassanpour, T. Torres, Adv. Mater. 2020, 10, 2002536.
- 15 Z. K. Gu, Z. D. Huang, X. T. Hu, Y. Wang, L. H. Li, M. Z. Li, Y. L. Song, ACS Appl. Mater. Interfaces 2020, 12, 22157.
- 16 S. Wu, J. Zhang, Z. Li, D. Liu, M. Qin, S. H. Cheung, X. Lu, D. Lei, S. K. So, Z. Zhu, A. K. Y. Jen, Joule 2020, 4, 1248.
- 17 Z. Wang, L. Zeng, C. Zhang, Y. Lu, S. Qiu, C. Wang, C. Liu, L. Pan, S. Wu, J. Hu, G. Liang, P. Fan, H. J. Egelhaaf, C. J. Brabec, F. Guo, Y. Mai, Adv. Funct. Mater. 2020, 32, 2001240.
- 18 N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408.
- 19 B. W. Park, S. I. Seok, Adv. Mater 2019, 31, 1805337.
- 20 C. Besleaga, L. E. Abramiuc, V. Stancu, A. G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G. A. Nemnes, M. Iliescu, H. G. Svavarsson, A. Manolescu, I. Pintilie, J. Phys. Chem. Lett. 2016, 7, 5168.
- 21 W. H. Li, X. Y. Gu, C. W. Shan, X. Lai, X. W. Sun, A. K. K. Kyaw, Nano Energy 2022, 91, 106666.
- 22 S. Ma, G. Z. Yuan, Y. Zhang, N. Yang, Y. J. Li, Q. Chen, Energy Environ. Sci. 2021, 15, 13.
- 23 Y. Z. Ma, Q. Zhao, J. Energy Chem. 2022, 64, 538.
- 24 M. Shao, T. Bie, P. Yang, Y. R. Gao, X. Jin, F. He, N. Zheng, Y. Yu, X. L. Zhang, Adv. Mater. 2021, 34, 2107211.
- 25 M. Mohammadi, S. Gholipour, M. M. Byranvand, Y. Abdi, N. Taghavinia, M. Saliba, ACS Appl. Mater. Interfaces 2021, 13, 45455.
- 26 N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, S. A. Haque, Nat. Commun. 2017, 8, 15218.
- 27 S. Wang, Y. Jiang, E. J. Juarez-Perez, L. K. Ono, Y. Qi, Nat. Energy 2016, 2, 16195.
- 28 A. H. Proppe, A. Johnston, S. Teale, A. Mahata, R. Quintero-Bermudez, E. H. Jung, L. Grater, T. Cui, T. Filleter, C. Y. Kim, S. O. Kelley, F. De Angelis, E. H. Sargent, Nat. Commun. 2021, 12, 3472.
- 29 T. Liu, J. Guo, D. Lu, Z. Xu, Q. Fu, N. Zheng, Z. Xie, X. Wan, X. Zhang, Y. Liu, Y. Chen, ACS Nano 2021, 15, 7811.
- 30 Y.-W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 2021, 6, 63.
- 31 L. Gao, I. Spanopoulos, W. Ke, S. Huang, I. Hadar, L. Chen, X. Li, G. Yang, M. G. Kanatzidis, ACS Energy Lett. 2019, 4, 1763.
- 32 J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu, W. Yuan, H. Yu, L. Chao, T. Niu, Y. Yang, X. Gao, Y. Chen, W. Huang, ACS Energy Lett. 2019, 4, 1513.
- 33 C. M. M. Soe, C. C. Stoumpos, M. Kepenekian, B. Traore, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A. D. Mohite, J. Eyen, T. J. Marks, M. G. Kanatzidis, J. Am, Chem. Soc. 2017, 139, 16297.
- 34 D. Yao, C. Zhang, S. Zhang, Y. Yang, A. Du, E. Waclawik, X. Yu, G. J. Wilson, H. Wang, ACS Appl. Mater. Interfaces 2019, 11, 29753.
- 35 J. Qiu, Y. D. Xia, Y. T. Zheng, W. Hui, H. Gu, W. B. Yuan, H. Yu, L. F. Chao, T. T. Niu, Y. G. Yang, X. Y. Gao, Y. H. Chen, W. Huang, ACS Energy Lett. 2019, 4, 1513.
- 36 C. Ma, D. Shen, T. W. Ng, M. F. Lo, C. S. Lee, Adv. Mater. 2018, 30 1800710.
- 37 L. Gao, X. Li, B. Traore, Y. Zhang, J. Fang, Y. Han, J. Even, C. Katan, K. Zhao, S. Liu, M. G. Kanatzidis, J. Am. Chem. Soc. 2021, 143, 12063.
- 38 L. Mao, C. C. Stoumpos, M. G.. Kanatzidis, J. Am. Chem. Soc. 2018, 141, 1171.
- 39 G. Liu, H. Zheng, J. Ye, S. Xu, L. Zhang, H. Xu, Z. Liang, X. Chen, X. Pan, ACS Energy Lett. 2021, 6, 4395.
- 40 G. Liu, H. Zheng, X. Xu, S. Xu, X. Zhang, X. Pan, S. Dai, Adv. Funct. Mater. 2019, 29, 1807565.
- 41
H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, S. Dai, Adv. Mater. 2018, 8, 1800051.
10.1002/aenm.201800051 Google Scholar