Highly Selective Photocatalytic Reduction of CO2 to CO Over Ru-Modified Bi2MoO6
Guangmin Ren
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorSitong Liu
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZizhen Li
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorHongcun Bai
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021 China
Search for more papers by this authorXiude Hu
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021 China
Search for more papers by this authorCorresponding Author
Xiangchao Meng
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorGuangmin Ren
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorSitong Liu
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorZizhen Li
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorHongcun Bai
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021 China
Search for more papers by this authorXiude Hu
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021 China
Search for more papers by this authorCorresponding Author
Xiangchao Meng
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
Search for more papers by this authorAbstract
Photocatalytic CO2 reduction is a promising strategy for sustainable development. Optimizing the structure of photocatalysts to facilitate the separation of electron–hole pairs for improved performance is not only highly desirable but also challenging. Aiming to improve the photocatalytic reduction of CO2, Ru is selected and applied to modify Bi2MoO6. Compared to pure Bi2MoO6, Ru-Bi2MoO6 exhibits substantially excellent photocatalytic activity in CO2 reduction with CO generation of 142.77 μmol−1 g−1 and selectivity of 100% under simulated sunlight. The enhancement might be attributed to the following: 1) Ru0 acting as an electron acceptor facilitates unique interaction and activation with CO, 2) Ru4+ doping enhances light absorption with addition impure energy levels within the bandgap, 3) ultrathin layers is in favor of improving the specific surface area and providing more exposed sites for CO2 adsorption and activation, and 4) interfaces between Ru and Bi2MoO6 accelerate charge transfer and separation, and electrons and holes are efficiently transferred to Ru and Ru4+, respectively, facilitating the reduction and oxidation reactions. This work provides a new approach to improve photocatalytic CO2 abatement and further presents valuable new insights into the design modification of photocatalytic systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200154-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 T. Hisatomi, K. Domen, Nat. Catal. 2019, 2, 387.
- 2 A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621.
- 3 L. Liu, Y. Zhang, H. Huang, Sol. RRL 2020, 5, 2000430.
- 4 C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 2019, 31, 1902868.
- 5 L. Cheng, X. Yue, L. Wang, D. Zhang, P. Zhang, J. Fan, Q. Xiang, Adv. Mater. 2021, 33, 2105135.
- 6 A. Li, Q. Cao, G. Zhou, B. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 2019, 58, 14549.
- 7 H. Wang, L. Zhang, K. Wang, X. Sun, W. Wang, Appl. Catal. B-Environ. 2019, 243, 771.
- 8 J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 2014, 136, 8839.
- 9 S. Wang, X. Wang, Appl. Catal. B-Environ. 2015, 162, 494.
- 10 Z.-J. Wang, H. Song, H. Pang, Y. Ning, T. D. Dao, Z. Wang, H. Chen, Y. Weng, Q. Fu, T. Nagao, Y. Fang, J. Ye, Appl. Catal. B-Environ. 2019, 250, 10.
- 11 M. Kamal Hussien, A. Sabbah, M. Qorbani, M. Hammad Elsayed, P. Raghunath, T.-Y. Lin, S. Quadir, H.-Y. Wang, H.-L. Wu, D.-L. M. Tzou, M.-C. Lin, P.-W. Chung, H.-H. Chou, L.-C. Chen, K.-H. Chen, Chem. Eng. J. 2022, 430, 132853.
- 12 Y. Sang, X. Cao, G. Dai, L. Wang, Y. Peng, B. Geng, J. Hazard. Mater. 2020, 381, 120942.
- 13 L. Zhang, W. Wang, L. Zhou, H. Xu, Small 2007, 3, 1618.
- 14 Z. Jia, T. Li, Z. Zheng, J. Zhang, J. Liu, R. Li, Y. Wang, X. Zhang, Y. Wang, C. Fan, Chem. Eng. J. 2020, 380, 122422.
- 15 X. Meng, Z. Li, Z. Zhang, J. Catal. 2017, 356, 53.
- 16 X. Gao, K. Huang, Z. Zhang, X. Meng, Chem. Commun. 2022, 58, 2014.
- 17 X. Meng, Z. Zhang, J. Catal. 2016, 344, 616.
- 18 X. Xu, N. Yang, P. Wang, S. Wang, Y. Xiang, X. Zhang, X. Ding, H. Chen, ACS Appl. Mater. Interfaces 2020, 12, 1867.
- 19 G. Zuo, Y. Wang, W. L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian, W. Dong, Y. Zhao, Chem. Eng. J. 2021, 403, 126328.
- 20 X. Meng, Z. Zhang, Appl. Catal. B-Environ. 2017, 209, 383.
- 21 J. Long, S. Wang, H. Chang, B. Zhao, B. Liu, Y. Zhou, W. Wei, X. Wang, L. Huang, W. Huang, Small 2014, 10, 2791.
- 22 X. Zhang, G. Ren, C. Zhang, J. Xue, Q. Zhao, R. Li, Y. Wang, C. Fan, Green Energy Environ. 2021, 6, 693.
- 23 X. Zhu, Z. Wang, K. Zhong, Q. Li, P. Ding, Z. Feng, J. Yang, Y. Du, Y. Song, Y. Hua, J. Yuan, Y. She, H. Li, H. Xu, Chem. Eng. J. 2022, 429, 132204.
- 24 M. J. Valero-Romero, J. G. Santaclara, L. Oar-Arteta, L. van Koppen, D. Y. Osadchii, J. Gascon, F. Kapteijn, Chem. Eng. J. 2019, 360, 75.
- 25 S. Feng, J. Zhao, Y. Bai, X. Liang, T. Wang, C. Wang, J. CO2 Util. 2020, 38, 1.
- 26 Y. Li, A. G. Walsh, D. Li, D. Do, H. Ma, C. Wang, P. Zhang, X. Zhang, Nanoscale 2020, 12, 17245.
- 27 J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li, Z. Liu, Angew. Chem. Int. Ed. 2018, 57, 14847.
- 28 F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Adv. Funct. Mater. 2019, 29, 1904256.
- 29 Y. Chen, F. Wang, Y. Cao, F. Zhang, Y. Zou, Z. Huang, L. Ye, Y. Zhou, ACS Appl. Energ. Mater. 2020, 3, 4610.
- 30 T. Avanesian, G. S. Gusmão, P. Christopher, J. Catal. 2016, 343, 86.
- 31 S. Cai, M. Zhang, J. Li, J. Chen, H. Jia, Sol. RRL 2020, 5, 2000313.
- 32 Y. Zhou, Q. Zhang, X. Shi, Q. Song, C. Zhou, D. Jiang, J. Colloid Inter. Sci. 2021, 608, 2809.
- 33 P. G. O’Brien, A. Sandhel, T. E. Wood, A. A. Jelle, L. B. Hoch, D. D. Perovic, C. A. Mims, G. A. Ozin, Adv. Sci. 2014, 1, 1400001.
- 34 H. Wang, X. Li, Q. Ruan, J. Tang, Nanoscale 2020, 12, 12329.
- 35 S. Wang, X. Ding, N. Yang, G. Zhan, X. Zhang, G. Dong, L. Zhang, H. Chen, Appl. Catal. B-Environ. 2020, 265, 118585.
- 36 Q. Meng, C. Lv, J. Sun, W. Hong, W. Xing, L. Qiang, G. Chen, X. Jin, In Appl. Catal. B-Environ. 2019, 256, 117781.
- 37 J. Liu, D. Li, R. Li, Y. Wang, Y. Wang, C. Fan, Chem. Eng. J. 2020, 395, 123954.
- 38 H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B-Environ. 2014, 160-161, 89.
- 39 L. Yang, C. Du, S. Tan, Z. Zhang, J. Song, Y. Su, Y. Zhang, S. Wang, G. Yu, H. Chen, L. Zhou, J. Chen, Ceram. Int. 2021, 47, 5786.
- 40 S.-Z. K. ChuWada K. Wada, S. Inoue, S.-I. Hishita, K. Kurashima, J. Phys. Chem. B 2003, 107, 10180.
- 41 J. Yu, G. Li, H. Liu, L. Zhao, A. Wang, Z. Liu, H. Li, H. Liu, Y. Hu, W. Zhou, Adv. Funct. Mater. 2019, 29, 1901154.
- 42 S. Wang, D. Guo, M. Zong, C. Fan, X. Jun, D.-H. Wang, Appl. Catal. A-Gen. 2021, 617, 118112.
- 43 Y. Ma, Y. Jia, Z. Jiao, M. Yang, Y. Qi, Y. Bi, Chem. Commun. 2015, 51, 6655.
- 44 P. Jiang, Y. Yang, R. Shi, G. Xia, J. Chen, J. Su, Q. Chen, J. Mater. Chem. A 2017, 5, 5475.
- 45 L. Sun, E. Chen, T. Guo, Ceram. Inter. 2020, 46, 15565.
- 46 C. Wang, Y. Li, L. Huang, L. Yang, H. Wang, J. Liu, J. Liu, Z. Song, L. Huang, Chem. Eng. J. 2021, 411, 128505.
- 47 Z. R. Tang, Y. Zhang, N. Zhang, Y. J. Xu, Nanoscale 2015, 7, 7030.
- 48 L. Ke, P. Li, X. Wu, S. Jiang, M. Luo, Y. Liu, Z. Le, C. Sun, S. Song, Appl. Catal. B-Environ. 2017, 205, 319.
- 49 J.-Y. Tang, R.-T. Guo, W.-G. Pan, W.-G. Zhou, C.-Y. Huang, Appl. Sur. Sci. 2019, 467-468, 206.
- 50 B. Wang, J. Di, L. Lu, S. Yan, G. Liu, Y. Ye, H. Li, W. Zhu, H. Li, J. Xia, Appl. Catal. B-Environ. 2019, 254, 551.
- 51 X. Xiong, C. Mao, Z. Yang, Q. Zhang, G. I. N. Waterhouse, L. Gu, T. Zhang, Adv. Energy Mater. 2020, 10, 2002928.
- 52 H. Yu, J. Li, Y. Zhang, S. Yang, K. Han, F. Dong, T. Ma, H. Huang, Angew. Chem. Int. Ed. 2019, 58, 3880.
- 53 X. Zhu, S. Huang, Q. Yu, Y. She, J. Yang, G. Zhou, Q. Li, X. She, J. Deng, H. Li, H. Xu, Appl. Catal. B-Environ. 2020, 269, 118760.
- 54 J. Wu, X. Li, W. Shi, P. Ling, Y. Sun, X. Jiao, S. Gao, L. Liang, J. Xu, W. Yan, C. Wang, Y. Xie, Angew. Chem. Int. Ed. 2018, 57, 8719.