Enhancement of Hole Extraction Efficiency of Dibenzothiophenes by Substitution Engineering: Toward Additive-Free Perovskite Solar Cells with Power Conversion Efficiency Exceeding 20%
Ranush Durgaryan
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorJurate Simokaitiene
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorDmytro Volyniuk
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorOleksandr Bezvikonnyi
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorYan Danyliv
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorByeong Jo Kim
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Kai Lin Woon
Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 95031 Cergy-Pontoise Cedex, France
Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorCorresponding Author
Gjergji Sini
Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 95031 Cergy-Pontoise Cedex, France
Search for more papers by this authorCorresponding Author
Gerrit Boschloo
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Juozas Vidas Grazulevicius
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorRanush Durgaryan
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorJurate Simokaitiene
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorDmytro Volyniuk
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorOleksandr Bezvikonnyi
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorYan Danyliv
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorByeong Jo Kim
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Kai Lin Woon
Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 95031 Cergy-Pontoise Cedex, France
Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, 50603 Malaysia
Search for more papers by this authorCorresponding Author
Gjergji Sini
Laboratoire de Physicochimie des Polymères et des Interfaces, EA 2528, CY Cergy Paris Université, 95031 Cergy-Pontoise Cedex, France
Search for more papers by this authorCorresponding Author
Gerrit Boschloo
Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
Search for more papers by this authorCorresponding Author
Juozas Vidas Grazulevicius
Departament of Polymer Chemistry and Technology, Kaunas University of Technology, LT51423 Kaunas, Lithuania
Search for more papers by this authorAbstract
Replacement of hole-transporting materials (HTM) for additive-free perovskite solar cells (PSCs) is an urgent issue. In this work, three new derivatives of dibenzothiophene with methoxyphenyl, trimethoxyphenyl, carbazole moieties are synthesized as hole-transporting materials for PSCs. The hole density dynamics and hole transporting properties of synthesized dibenzothiophene derivatives are investigated by combination of the charge extraction by linearly increasing voltage (CELIV) and time-of-flight (TOF) techniques. The TOF hole mobility (μh) of one compound reaches the highest value of 4.2 × 10−3 cm2 V−1s−1 at an electric field of 2.5 × 105 V cm−1, however additive-free layers in PSCs did not show the best performance. Instead, the PSC efficiency is determined by a trade-off between the hole-mobility properties and the “effective” hole recombination rate kB ranging 0.5–40.3 ms−1 as determined by means of the CELIV method. The best hole extraction properties are observed for a compound with μh of 9.45 × 10−4 cm2 V−1s−1 and kB of 11.8 ms−1 which is coherent with its lowest energetic disorder σ of 78.2 meV. Having both appropriate hole density dynamics and hole-transporting properties, hole-transporting layer of that compound allows to reach PCE of 20.9% for additive-free PSC, which is among the state-of-art values for devices with undoped HTM.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
solr202200128-sup-0001-SuppData-S1.pdf2.8 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Best Research-Cell Efficiency Chart| Photovoltaic Research |NREL transforming energy, https://www.nrel.gov/pv/cell-efficiency.html (accessed: March 2022).
- 2M. Jung, S.-G. Ji, G. Kim, S. Il Seok, Chem. Soc. Rev. 2019, 48, 2011.
- 3Y. Li, S. Ye, W. Sun, W. Yan, Y. Li, Z. Bian, Z. Liu, S. Wang, C. Huang, J. Mater. Chem. A 2015, 3, 18389.
- 4Y. Yang, Z. Liu, W. K. Ng, L. Zhang, H. Zhang, X. Meng, Y. Bai, S. Xiao, T. Zhang, C. Hu, K. S. Wong, S. Yang, Adv. Funct. Mater. 2019, 29, 1806506.
- 5H. Chen, S. Yang, J. Mater. Chem. A 2019, 7, 15476.
- 6U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 1998, 395, 583.
- 7S. Yun, J. N. Freitas, A. F. Nogueira, Y. Wang, S. Ahmad, Z. S. Wang, Prog. Polym. Sci., 2016, 59, 1.
- 8Z. Yu, L. Sun, Adv. Energy Mater. 2015, 5, 1500213.
- 9J. Zhang, Q. Sun, Q. Chen, Y. Wang, Y. Zhou, B. Song, X. Jia, Y. Zhu, S. Zhang, N. Yuan, J. Ding, Y. Li, Sol. RRL 2020, 4, 1900421.
- 10D. R. Kil, C. Lu, J. M. Ji, C. H. Kim, H. K. Kim, Nanomaterials 2020, 10, 936.
- 11A. Magomedov, E. Kasparavičius, K. Rakstys, S. Paek, N. Gasilova, K. Genevičius, G. Juška, T. Malinauskas, M. K. Nazeeruddin, V. Getautis, J. Mater. Chem. C 2018, 6, 8874.
- 12Y. Hua, B. Xu, P. Liu, H. Chen, H. Tian, M. Cheng, L. Kloo, L. Sun, Chem. Sci. 2016, 7, 2633.
- 13T. H. Schloemer, J. A. Christians, J. M. Luther, A. Sellinger, Chem. Sci. 2019, 10, 1904.
- 14L. Caliò, M. Salado, S. Kazim, S. Ahmad, Joule 2018, 2, 1800.
- 15B. Xu, J. Huang, H. Ågren, L. Kloo, A. Hagfeldt, L. Sun, ChemSusChem 2014, 7, 3252.
- 16J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, N. Martín, Chem. Soc. Rev. 2018, 47, 8541.
- 17D. Zhang, P. Xu, T. Wu, Y. Ou, X. Yang, A. Sun, B. Cui, H. Sun, Y. Hua, J. Mater. Chem. A 2019, 7, 5221.
- 18H. Zhang, R. Deng, J. Wang, X. Li, Y. M. Chen, K. Liu, C. J. Taubert, S. Z. D. Cheng, Y. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 21891.
- 19Q.-Q. Ge, J.-Y. Shao, J. Ding, L.-Y. Deng, W.-K. Zhou, Y.-X. Chen, J.-Y. Ma, L.-J. Wan, J. Yao, J.-S. Hu, Y.-W. Zhong, Angew. Chemie 2018, 130, 11125.
10.1002/ange.201806392 Google Scholar
- 20Y.-K. Wang, Z.-C. Yuan, G.-Z. Shi, Y.-X. Li, Q. Li, F. Hui, B.-Q. Sun, Z.-Q. Jiang, L.-S. Liao, Adv. Funct. Mater. 2016, 26, 1375.
- 21I. Zimmermann, J. Urieta-Mora, P. Gratia, J. Aragó, G. Grancini, A. Molina-Ontoria, E. Ortí, N. Martín, M. K. Nazeeruddin, Adv. Energy Mater. 2017, 7, 1601674.
- 22L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angew. Chem., Int. Ed. 2016, 55, 14522.
- 23T. Hahn, S. Tscheuschner, F. J. Kahle, M. Reichenberger, S. Athanasopoulos, C. Saller, G. C. Bazan, T. Q. Nguyen, P. Strohriegl, H. Bässler, A. Köhler, Adv. Funct. Mater. 2017, 27, 1604906.
- 24N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, S. R. Forrest, Phys. Rev. B 2011, 83, 195326.
- 25W. L. Leong, S. R. Cowan, A. J. Heeger, Adv. Energy Mater. 2011, 1, 517.
- 26S. Zeiske, O. J. Sandberg, N. Zarrabi, W. Li, P. Meredith, A. Armin, Nat. Commun. 2021, 12, 3603.
- 27M. Stephen, K. Genevičius, G. Juška, K. Arlauskas, R. C. Hiorns, Polym. Int. 2017, 66, 13.
- 28M. Petrović, T. Ye, C. Vijila, S. Ramakrishna, Adv. Energy Mater. 2017, 7, 1602610.
- 29T. Malinauskas, D. Tomkute-Luksiene, R. Sens, M. Daskeviciene, R. Send, H. Wonneberger, V. Jankauskas, I. Bruder, V. Getautis, ACS Appl. Mater. Interfaces 2015, 7, 11107.
- 30B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt, L. Sun, Adv. Mater. 2014, 26, 6629.
- 31X. Sallenave, M. Shasti, E. H. Anaraki, D. Volyniuk, J. V. Grazulevicius, S. M. Zakeeruddin, A. Mortezaali, M. Grätzel, A. Hagfeldt, G. Sini, J. Mater. Chem. A 2020, 8, 8527.
- 32Y. Qiao, Z. Wei, C. Risko, H. Li, J. L. Brédas, W. Xu, D. Zhu, J. Mater. Chem. 2012, 22, 1313.
- 33K. L. Woon, Z. N. Nadiah, Z. A. Hasan, A. Ariffin, S. A. Chen, Dye. Pigm. 2016, 132, 1.
- 34J. Lorrmann, B. H. Badada, O. Inganäs, V. Dyakonov, C. Deibel, J. Appl. Phys. 2010, 108, 113705.
- 35G. Juška, K. Arlauskas, M. Viliūnas, J. Kočka, Phys. Rev. Lett. 2000, 84, 4946.
- 36G. Dennler, A. J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N. S. Sariciftci, Org. Electron. 2006, 7, 229.
- 37G. Sliaužys, G. Juška, K. Arlauskas, A. Pivrikas, R. Österbacka, M. Scharber, A. Mozer, N. S. Sariciftci, Thin Solid Films 2006, 511–512, 224.
- 38A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, O. Inganäs, V. Gulbinas, M. Kemerink, Adv. Energy Mater. 2017, 7, 1602143.
- 39A. Pivrikas, N. S. Sariciftci, G. Juška, R. Österbacka, Prog. Photovoltaics Res. Appl. 2007, 15, 677.
- 40A. J. Mozer, G. Dennler, N. S. Sariciftci, M. Westerling, A. Pivrikas, R. Österbacka, G. Juška, Phys. Rev. B 2005, 72, 035217.
- 41Y. Liu, Y. Gao, B. Xu, P. H. M. van Loosdrecht, W. Tian, Org. Electron. 2016, 38, 8.
- 42Y. Liu, H. Zhang, Y. Zhang, B. Xu, L. Liu, G. Chen, C. Im, W. Tian, J. Mater. Chem. A 2018, 6, 7922.
- 43A. Pivrikas, P. Stadler, H. Neugebauer, N. S. Sariciftci, Org. Electron. 2008, 9, 775.
- 44A. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O. Inganäs, M. Kemerink, Adv. Funct. Mater. 2014, 24, 4507.
- 45G. Juška, N. Nekrašas, K. Genevičius, J. Stuchlik, J. Kočka, Thin Solid Films 2004, 290, 451.
- 46H. Baessler, Phys. Status Solidi B 1993, 175, 15.
- 47M. Pope, J. Am. Chem. Soc. 2000, 122, 3986.
- 48Y. Liu, B. J. Kim, H. Wu, G. Boschloo, E. M. J. Johansson, ACS Appl. Energy Mater. 2021, 4, 9276.
- 49C. Ma, N. G. Park, Chem 2020, 6, 1254.
- 50T. Kreouzis, D. Poplavskyy, S. M. Tuladhar, M. Campoy-Quiles, J. Nelson, A. J. Campbell, D. D. C. Bradley, Phys. Rev. B 2006, 73, 235201.
- 51J. Simokaitiene, M. Cekaviciute, K. Baucyte, D. Volyniuk, R. Durgaryan, D. Molina, B. Yang, J. Suo, Y. Kim, D. A. D. S. Filho, A. Hagfeldt, G. Sini, J. V. Grazulevicius, ACS Appl. Mater. Interfaces 2021, 13, 21320.
- 52G. Sini, M. Schubert, C. Risko, S. Roland, O. P. Lee, Z. Chen, T. V. Richter, D. Dolfen, V. Coropceanu, S. Ludwigs, U. Scherf, A. Facchetti, J. M. J. Fréchet, D. Neher, Adv. Energy Mater. 2018, 8, 1702232.
- 53M. Warsitz, S. H. Rohjans, M. Schmidtmann, S. Doye, Eur. J. Org. Chem. 2021, 2021, 830.
- 54I. I. Fishchuk, A. K. Kadashchuk, J. Genoe, M. Ullah, H. Sitter, T. B. Singh, N. S. Sariciftci, H. Bässler, Phys. Rev. B 2010, 81, 045202.
- 55M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, SoftwareX 2015, 19, 1.
- 56N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, W. F. Van Gunsteren, Eur. Biophys. J. 2011, 40, 843.
- 57A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oostenbrink, A. E. Mark, J. Chem. Theory Comput. 2011, 7, 4026.
- 58A. V. Titov, I. S. Ufimtsev, N. Luehr, T. J. Martinez, J. Chem. Theory Comput. 2013, 9, 213.
- 59D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J. L. Brédas, F. Castet, Chem. Mater. 2011, 23, 591.
- 60K. L. Woon, W. S. Wong, N. Chanlek, H. Nakajima, S. Tunmee, C. Songsiriritthigul, V. S. Lee, P. Songsiriritthigul, Org. Electron. 2019, 74, 1.
- 61R. A. Marcus, J. Chem. Phys. 1957, 26, 867.
- 62J. Rivnay, R. Noriega, R. J. Kline, A. Salleo, M. F. Toney, Phys. Rev. B 2011, 84, 045203.
- 63I. Yavuz, J. B. Lin, K. N. Houk, Phys. Chem. Chem. Phys. 2019, 21, 901.