A General Low-Temperature Strategy to Prepare High-Quality Metal Sulfides Charge-Transporting Layers for All-Inorganic CsPbI2Br Perovskite Solar Cells
Weitao Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorZhenxing Sun
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXinyu Guan
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXueying Tian
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorBinkai Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJing Zhou
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorRui Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorFumeng Ren
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJianan Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorSanwan Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Shasha Zhang
School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorWeitao Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorZhenxing Sun
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXinyu Guan
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorXueying Tian
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorBinkai Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJing Zhou
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorRui Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorFumeng Ren
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJianan Wang
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorSanwan Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Shasha Zhang
School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Zonghao Liu
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Wei Chen
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorAbstract
Inorganic perovskite solar cells (I-PSCs) have attracted great attention due to the high thermal stability of inorganic perovskites versus the organic–inorganic perovskites. To ensure the thermal stability of I-PSCs, using effective and stable inorganic charge-transporting layers (CTLs) to replace organic ones is quite desirable. The use of low-temperature-prepared inorganic CTLs can also lower the total cost of I-PSCs. Herein, a general strategy to prepare high-quality inorganic nanoparticles-based electron transport layers (ETLs) below 70 °C by ligand exchange on top of inorganic perovskites is developed. The ETLs possess a suitable energy-level structure, favorable conductivity, and chemical stability. Furthermore, all-inorganic CTLs-based CsPbI2Br I-PSCs with p–i–n architecture are fabricated without using any thermally unstable organic components. Consequently, the as-fabricated I-PSCs based on CdS ETLs yielded the highest power conversion efficiency (PCE) of up to 15.04%, among the most efficient CsPbI2Br inverted PSCs. Inspiringly, the unencapsulated all-layer-inorganic PSCs present outstanding stabilities, which maintained 94.8% and 95.2% of their initial PCEs after aging at 85 °C in the dark and operating under continuous light illumination at 45 °C for 480 h in N2 atmosphere, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
solr202200098-sup-0001-SuppData-S1.pdf1.2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Min, D. Lee, J. Kim, G. Kim, K. Lee, J. Kim, M. Paik, Y. Kim, K. Kim, M. Kim, T. Shin, S. Seok, Nature 2021, 598, 444.
- 2J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. Hope, F. Eickemeyer, M. Kim, Y. Yoon, I. Choi, B. Darwich, S. Choi, Y. Jo, J. Lee, B. Walker, S. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. Kim, M. Grätzel, J. Kim, Nature 2021, 592, 381.
- 3N. Li, X. Niu, L. Li, H. Wang, Z. Huang, Y. Zhang, Y. Chen, X. Zhang, C. Zhu, H. Zai, Y. Bai, S. Ma, H. Liu, X. Liu, Z. Guo, G. Liu, R. Fan, H. Chen, J. Wang, Y. Lun, X. Wang, J. Hong, H. Xie, D. Jakob, X. Xu, Q. Chen, H. Zhou, Science 2021, 373, 561.
- 4Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 5https://www.nrel.gov/pv/cell-efficiency.html.
- 6M. Saliba, Science 2018, 359, 6374.
- 7Z. Liu, L. Qiu, E. Juarez-Perez, Z. Hawash, T. Kim, Y. Jiang, Z. Wu, S. Raga, L. Ono, S. Liu, Y. Qi, Nat. Commun. 2018, 9, 3880.
- 8K. Domanski, E. A. Alharbi, A. Hagfeldt, M. Grätzel, W. Tress, Nat. Energy 2018, 3, 61.
- 9N. G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
- 10S. H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science 2018, 362, 449.
- 11B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H. G. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
- 12S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, Nat. Commun. 2019, 10, 1161.
- 13Z. Liu, L. Qiu, L. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D. Son, Y. Dang, S. Kazaoui, Y. Qi, Nat. Energy 2020, 5, 596.
- 14J. Zhang, G. Hodes, Z. Jin, S. Liu, Angew. Chem., Int. Ed. 2019, 58, 15596.
- 15L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip, Y. Cao, Adv. Mater. 2018, 30, 1802509.
- 16G. Yin, H. Zhao, H. Jiang, S. Yuan, T. Niu, K. Zhao, Z. Liu, S. Liu, Adv. Funct. Mater. 2018, 28, 1803269.
- 17W. Ahmad, J. Khan, G. Niu, J. Tang, Sol. RRL 2017, 1, 1700048.
- 18S. Zhang, S. Wu, W. Chen, H. Zhu, Z. Xiong, Z. Yang, C. Chen, R. Chen, L. Han, W. Chen, Mater. Today Energy 2018, 8, 125.
- 19J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C. J. Brabec, H. L. Yip, Y. Cao, Adv. Mater. 2019, 31, 1901152.
- 20L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su, Z. Hu, C. Zhang, S. Liu, J. Chang, Y. Hao, Nano Energy 2019, 60, 583.
- 21Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Science 2019, 365, 591.
- 22G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith. J. Mater. Chem. A 2015, 3, 19688.
- 23P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nat. Commun. 2018, 9, 2225.
- 24J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Adv. Energy Mater. 2018, 8, 1703246.
- 25W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, Y. Li, Joule 2019, 3, 1.
- 26J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue, X. Li, C. Chueh, H. Yip, Z. Zhu, A. K. Jen, Nat. Commun. 2020, 11, 177.
- 27J. He, J. Liu, Y. Hou, Y. Wang, S. Yang, H. Yang, Nat. Commun. 2020, 11, 4237.
- 28G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. D. Carlo, C. Ducati, Nat. Energy 2016, 1, 15012.
- 29Z. Li, C. Xiao, Y. Yang, S. P. Harvey, D. H. Kim, J. A. Christians, M. Yang, P. Schulz, S. U. Nanayakkara, C. S. Jiang, J. M. Luther, J. J. Berry, M. C. Beard, M. M. Al-Jassima, K. Zhu, Energy Environ. Sci. 2017, 10, 1234.
- 30N. J. Jeon, H. Na, E. H. Jung, T. Y. Yang, Y. G. Lee, G. Kim, H. W. Shin, S. I. Seok, J. Lee, J. Seo, Nat. Energy 2018, 3, 682.
- 31Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P. Schmuki, H. Steinrück, R. Fink, M. Halik, H. Snaith, C. Brabec, Science 2017, 358, 1192.
- 32J. You, L. Meng, T. Song, T. Guo, Y. Yang, W. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75.
- 33M. Qin, J. Ma, W. Ke, P. Qin, H. Lei, H. Tao, X. Zheng, L. Xiong, Q. Liu, Z. Chen, J. Lu, G. Yang, G. Fang, ACS Appl. Mater. Interfaces 2016, 8, 8460.
- 34J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, W. Laua, J. Mater. Chem. A 2015, 3, 11750.
- 35X. Li, J. Yang, Q. Jiang, H. Lai, S. Li, J. Xin, W. Chu, J. Hou, ACS Nano 2018, 12, 5605.
- 36L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, H. Chen, J. Mater. Chem. C 2014, 2, 9087.
- 37B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Nano Energy 2019, 57, 718.
- 38C. Liu, X. Zhou, S. Chen, X. Zhao, S. Dai, B. Xu, Adv. Sci. 2019, 6, 1801169.
10.1002/advs.201801169 Google Scholar
- 39N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Grätzel, Science 2017, 358, 768.
- 40H. Zhang, H. Wang, W. Chen, A. K. Jen, Adv. Mater. 2017, 29, 1604984.
- 41H. Zhang, H. Wang, H. Zhu, C. Chueh, W. Chen, S. Yang, A. K. Jen, Adv. Energy Mater. 2018, 8, 1702762.
- 42J. Tirado, C. Roldán-Carmona, F. Muñoz-Guerrero, G. Onilla-Arboleda, M. Ralaiarisoa, G. Grancini, V. Queloz, N. Koch, M. Nazeeruddin, F. Jaramillo, Appl. Surf. Sci. 2019, 478, 607.
- 43P. Fahsyar, N. Ludin, N. Ramli, S. Sepeai, M. Suait, M. Ibrahim, M. Teridi, K. Sopian, Appl. Phys. A 2021, 127, 383.
- 44C. Yang, Z. Wang, Y. Lv, R. Yuan, Y. Wu, W. Zhang, Chem. Eng. J. 2021, 406, 126855.
- 45R. Fang, S. Wu, W. Chen, Z. Liu, S. Zhang, R. Chen, Y. Yue, L. Deng, Y. Cheng, L. Han, W. Chen, ACS Nano 2018, 12, 2403.
- 46S. Zhang, W. Chen, S. Wu, R. Chen, Y. Huang, Z. Yang, J. Li, L. Han, W. Chen, J. Mater. Chem. A 2019, 7, 18603.
- 47S. Zhang, W. Chen, S. Wu, R. Chen, Z. Liu, Y. Huang, Z. Yang, H. Zhu, J. Li, L. Han, W. Chen, ACS Appl. Mater. Interfaces 2019, 11, 43303.
- 48Y. Zhao, H. Zhang, X. Ren, H. Zhu, Z. Huang, F. Ye, D. Ouyang, K. Cheah, A. K. Jen, W. Choy, ACS Energy Lett. 2018, 3, 2891.
- 49C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, J. Am. Chem. Soc. 2018, 140, 3825.
- 50C. Liu, Y. Yang, C. Zhang, S. Wu, L. Wei, F. Guo, G. Arumugam, J. Hu, X. Liu, J. Lin, R. Schropp, Y. Mai, Adv. Mater. 2020, 32, 1901152.
- 51W. Chen, S. Zhang, Z. Liu, S. Wu, R. Chen, M. Pan,Z. Yang, H. Zhu, S. Liu, J. Tang, J. Li, W. Chen, Sol. RRL 2019, 3, 1900346.
- 52J. Luther, M. Law, Q. Song, C. Perkins, M. Beard, A. Nozik, ACS Nano 2008, 2, 271.
- 53J. Tang, K. Kemp, S. Hoogland, K. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. Chou, A. Fischer, A. Amassian, J. Asbury, E. Sargent, Nat. Mater. 2011, 10, 765.
- 54J. Zhang, L. Wang, X. Liu, X. Li, W. Huang, J. Mater. Chem. A 2015, 3, 535.
- 55M. Verma, D. Patidar, K. Sharma, N. Saxena, J. Nanoelectron. Optoelectron. 2015, 10, 1.
- 56Z. Xu, J. Wu, Y. Yang, Z. Lan, J. Lin, ACS Appl. Energy Mater. 2018, 1, 4050.
- 57W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Science 2015, 350, 944.
- 58Z. Yang, W. Zhang, S. Wu, H. Zhu, Z. Liu, Z. Liu, Z. Jiang, R. Chen, J. Zhou, Q. Lu, Z. Xiao, L. Shi, H. Chen, L. Ono, S. Zhang, Y. Zhang, Y. Qi, L. Han, W. Chen, Sci. Adv. 2021, 7, 3749.
- 59K. Domanski, J. Correa-Baena, N. Mine, M. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Gratzel, ACS Nano 2016, 10, 6306.
- 60Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 2016, 9, 1752.
- 61Z. Liu, Q. Chen, J. Lee, Z. Zhao, X. Xu, Y. Hsieh, L. Meng, P. Sun, N. Marco, H. Zhou, Y. Cheng, Y. Yang, Adv. Energy Mater. 2018, 1800568.
- 62J. Lee, S. Kim, S. Bae, D. Lee, O. Lin, Y. Yang, N. Park, Nano Lett. 2017, 17, 4270.
- 63H. Snaith, P. Hacke, Nat. Energy 2018, 3, 459.
- 64S. Zhang, Z. Liu, W. Zhang, Z. Jiang, W. Chen, R. Chen, Y. Huang, Z. Yang, Y. Zhang, L. Han, W. Chen, Adv. Energy Mater. 2020, 10, 2001610.
- 65Q. Lu, Z. Yang, X. Meng, Y. Yue, M. Ahmad, W. Zhang, S. Zhang, Y. Zhang, Z. Liu, W. Chen, Adv. Funct. Mater. 2021, 31, 2100151.
- 66X. Zhong, Y. Feng, W. Knoll, M. Han, J. Am. Chem. Soc. 2003, 125, 13559.
- 67H. Shen, H. Wang, X. Li, J. Niu, H. Wang, X. Chen, L. Li, Dalton Trans. 2009, 10534.
- 68Y. Yang, H. Qin, M. Jiang, L. Lin, T. Fu, X. Dai, Z. Zhang, Y. Niu, H. Cao, Y. Jin, F. Zhao, X. Peng, Nano Lett. 2016, 16, 2133.