Low Temperature Producing Copper-Doped Gallium Oxide as Hole Transport Layers of Perovskite Solar Cells Enhanced by Impurity Levels
Jiejing Zhang
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorSha Zhu
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorCan Gao
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorChunxiao Gao
State Key Laboratory for Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Xizhe Liu
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorJiejing Zhang
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorSha Zhu
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorCan Gao
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorChunxiao Gao
State Key Laboratory for Superhard Materials, Jilin University, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Xizhe Liu
Institute of Atomic and Molecular Physics, Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012 China
Search for more papers by this authorAbstract
In inverted perovskite solar cells (PSCs), metal oxides become kind of promising hole transport layers for their facile synthesis and low cost. For conventional hole transport materials, the valence band match between metal oxides and perovskite layers is usually necessary for the hole extraction process. Ga2O3 is an emerging semiconductor material with ultrawide bandgap, but a significant energy level mismatch exists at Ga2O3/perovskite interfaces. In this work, Cu-doped Ga2O3 (Ga2O3:Cu) nanocrystals are synthesized by the hydrothermal method and used as the hole transport material of inverted PSCs for the first time. It is found that Cu dopants can substantially improve the performance of Ga2O3 layers, and the efficiency of PSCs is increased from 7.6% to 19.5%. This improvement can be attributed to the additional hole transport channels from impurity levels of Cu dopants, which exactly match with the valence band of perovskite layers. As a consequence, Ga2O3:Cu layers can effectively extract holes and inhibit the recombination in perovskite layers. This work also provides an alternative route for the design of hole transport materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
solr202100861-sup-0001-SuppData-S1.pdf421.7 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 National Renewable Energy Laboratory, Best research-cell efficiencies chart, 2021, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200104.pdf (accessed: May 2021).
- 2G. Kim, H. Min, S. Lee Kyoung, Y. Lee Do, M. Yoon So, I. Seok Sang, Science 2020, 370, 108.
- 3J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi, J. Seo, Nature 2021, 590, 587 .
- 4J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381.
- 5D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, F. Trindade Gustavo, F. Watts John, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, H. Friend Richard, Q. Gong, J. Snaith Henry, R. Zhu, Science 2018, 360, 1442.
- 6Z.-K. Wang, L.-S. Liao, Adv. Opt. Mater. 2018, 6, 1800276.
- 7F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S. H. Jang, J. Zhang, X. Lu, D. Lei, C. S. Lee, Z. Zhu, A. K. Jen, J. Am. Chem. Soc. 2020, 142, 20134.
- 8H. Li, J. Shi, J. Deng, Z. Chen, Y. Li, W. Zhao, J. Wu, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Mater. 2020, 32, 1907396.
- 9X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang, W. Yang, M. Yu, P. Chen, Y. Wang, J. Wu, D. Luo, Y. Tu, L. Zhao, Q. Gong, R. Zhu, Adv. Mater. 2020, 32, 2002585.
- 10B. Li, Y. Xiang, K. D. G. I. Jayawardena, D. Luo, Z. Wang, X. Yang, J. F. Watts, S. Hinder, M. T. Sajjad, T. Webb, H. Luo, I. Marko, H. Li, S. A. J. Thomson, R. Zhu, G. Shao, S. J. Sweeney, S. R. P. Silva, W. Zhang, Nano Energy 2020, 78, 105249.
- 11S. Fantacci, F. De Angelis, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. C 2011, 115, 23126.
- 12W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, Y. Qiu, J. Mater. Chem. A 2014, 2, 13587.
- 13Z. Bagheri, F. Matteocci, E. Lamanna, D. Di Girolamo, A. G. Marrani, R. Zanoni, A. Di Carlo, A. Moshaii, Sol. Energy Mater. Sol. Cells 2020, 215, 110606.
- 14K. Wang, C. Wu, Y. Hou, D. Yang, T. Ye, J. Yoon, M. Sanghadasa, S. Priya, Energy Environ. Sci. 2020, 13, 3412.
- 15M.-J. Choi, Y.-S. Lee, I. H. Cho, S. S. Kim, D.-H. Kim, S.-N. Kwon, S.-I. Na, Nano Energy 2020, 71, 104639.
- 16H. Chen, Q. Wei, M. I. Saidaminov, F. Wang, A. Johnston, Y. Hou, Z. Peng, K. Xu, W. Zhou, Z. Liu, L. Qiao, X. Wang, S. Xu, J. Li, R. Long, Y. Ke, E. H. Sargent, Z. Ning, Adv. Mater. 2019, 31, 1903559.
- 17J. W. Jung, C. C. Chueh, A. K. Jen, Adv. Mater. 2015, 27, 7874.
- 18Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z. G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, C. J. Brabec, Adv. Mater. 2016, 28, 5112.
- 19W. Nie, H. Tsai, J. C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, J. Crochet, P. M. Ajayan, M. Kanatzidis, J. Even, A. D. Mohite, Adv. Mater. 2018, 30, 1703879.
- 20A. E. Shalan, T. Oshikiri, S. Narra, M. M. Elshanawany, K. Ueno, H. P. Wu, K. Nakamura, X. Shi, E. W. Diau, H. Misawa, ACS Appl. Mater. Interfaces 2016, 8, 33592.
- 21H. Rao, S. Ye, W. Sun, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, Y. Li, C. Huang, Nano Energy 2016, 27, 51.
- 22H. Zhang, H. Wang, H. Zhu, C. C. Chueh, W. Chen, S. Yang, A. K. Y. Jen, Adv. Energy Mater. 2018, 8, 1702762.
- 23I. T. Papadas, A. Savva, A. Ioakeimidis, P. Eleftheriou, G. S. Armatas, S. A. Choulis, Mater. Today Energy 2018, 8, 57.
- 24S. Akin, F. Sadegh, S. Turan, S. Sonmezoglu, ACS Appl. Mater. Interfaces 2019, 11, 45142.
- 25Y. Chen, Z. Yang, S. Wang, X. Zheng, Y. Wu, N. Yuan, W. H. Zhang, S. F. Liu, Adv. Mater. 2018, 30, 1805660.
- 26Y. Chen, Z. Yang, X. Jia, Y. Wu, N. Yuan, J. Ding, W.-H. Zhang, S. Liu, Nano Energy 2019, 61, 148.
- 27D. Ouyang, J. Xiao, F. Ye, Z. Huang, H. Zhang, L. Zhu, J. Cheng, W. C. H. Choy, Adv. Energy Mater. 2018, 8, 1702722.
- 28J. H. Lee, I. S. Jin, Y. W. Noh, S. H. Park, J. W. Jung, ACS Sustainable Chem. Eng. 2019, 7, 17661.
- 29M. F. Xu, X. B. Shi, Z. M. Jin, F. S. Zu, Y. Liu, L. Zhang, Z. K. Wang, L. S. Liao, ACS Appl. Mater. Interfaces 2013, 5, 10866.
- 30Y.-H. Lou, M. Li, Z.-K. Wang, Appl. Phys. Lett. 2016, 108, 053301.
- 31M. Higashiwaki, A. Kuramata, H. Murakami, Y. Kumagai, J. Phys. D: Appl. Phys. 2017, 50, 333002.
- 32X. Chen, F. Ren, S. Gu, J. Ye, Photonics Res. 2019, 7, 381.
- 33A. Afzal, J. Materiomics 2019, 5, 542.
- 34K.-H. Hu, Z.-K. Wang, K.-L. Wang, M.-P. Zhuo, Y. Zhang, F. Igbari, Q.-Q. Ye, L.-S. Liao, Sol. RRL 2019, 3, 1900201.
- 35H. Dong, S. Pang, Y. Xu, Z. Li, Z. Zhang, W. Zhu, D. Chen, H. Xi, Z. Lin, J. Zhang, Y. Hao, C. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 54703.
- 36J. Ma, M. Zheng, C. Chen, Z. Zhu, X. Zheng, Z. Chen, Y. Guo, C. Liu, Y. Yan, G. Fang, Adv. Funct. Mater. 2018, 28, 1804128.
- 37Z. Kabilova, C. Kurdak, R. L. Peterson, Semicond. Sci. Technol. 2019, 34, 03LT02.
- 38A. K. Rajapitamahuni, L. R. Thoutam, P. Ranga, S. Krishnamoorthy, B. Jalan, Appl. Phys. Lett. 2021, 118, 072105.
- 39H. Yan, Y. Guo, Q. Song, Y. Chen, Phys. B 2014, 434, 181.
- 40Y. Feng, J. Liu, D. Wu, Z. Zhou, Y. Deng, T. Zhang, K. Shih, Chem. Eng. J. 2015, 280, 514.
- 41S. Rafique, L. Han, H. Zhao, Phys. Status Solidi A 2017, 214, 1700063.
10.1002/pssa.201700063 Google Scholar
- 42Q. Liu, D. Guo, K. Chen, Y. Su, S. Wang, P. Li, W. Tang, J. Alloys Compd. 2018, 731, 1225.
- 43Y. K. Frodason, K. M. Johansen, L. Vines, J. B. Varley, J. Appl. Phys. 2020, 127, 075701.
- 44D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2016, 2, e1501170.