Vapor-Transport-Deposited Orthorhombic-SnSe Thin Films: A Potential Cost-Effective Absorber Material for Solar-Cell Applications
Raju Nandi
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorPravin S. Pawar
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorKrishnaRao Eswar Neerugatti
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJae Yu Cho
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorSeongheon Kim
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorSeong Ho Cho
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorYun Seog Lee
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Jaeyeong Heo
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorRaju Nandi
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorPravin S. Pawar
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorKrishnaRao Eswar Neerugatti
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorJae Yu Cho
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorSeongheon Kim
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorSeong Ho Cho
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorYun Seog Lee
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorCorresponding Author
Jaeyeong Heo
Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
Search for more papers by this authorAbstract
The power-conversion efficiencies of orthorhombic tin selenide (α-SnSe)-based thin-film solar cells (TFSCs) are very low—less than 1% in most cases—due to the poor crystallinity, small grains, and large number of defects. Herein, the highest cell efficiency of 2.51% together with a high short-circuit current density of 28.07 mA cm−2 for α-SnSe TFSCs grown via vapor-transport-deposition (VTD) is reported. The grain size and surface roughness of the SnSe thin films greatly influence the shunt properties of the device. Significantly large shunt losses are detected in the case of both small and extremely large grains. The shunt losses for SnSe thin film with small grains are associated with high grain-boundary scattering. The presence of extremely large grains results in high surface roughness of the SnSe thin film, which causes nonuniform deposition of the CdS buffer layer and, consequently, higher shunt losses. The SnSe thin film with moderate-sized grains and inferior surface roughness exhibits improved shunt properties owing to uniform deposition of the CdS buffer layer and subsequent layers and thereby significant improvement in the device performance. The potential of orthorhombic VTD-SnSe thin films as an emerging cost-effective absorber layer for TFSCs is experimentally demonstrated.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
solr202100676-sup-0001-SuppData-S1.pdf1.5 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Deb, Renew. Energy 1996, 8, 375.
- 2 K. Chopra, P. Paulson, V. Dutta, Prog. Photovolt. Res. Appl. 2004, 12, 69.
- 3 G. Han, S. Zhang, P. P. Boix, L. H. Wong, L. Sun, S.-Y. Lien, Prog. Mater. Sci. 2017, 87, 246.
- 4 T. D. Lee, A. U. Ebong, Renew. Sustain.Energy Rev. 2017, 70, 1286.
- 5 M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C. D. Wessendorf, T. Magorian Friedlmeier, Appl. Phys. Rev. 2018, 5, 041602.
- 6 M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. 2021, 29, 3.
- 7 S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Adv. Mater. 2019, 31, 1806692.
- 8 D. Wang, W. Zhao, Y. Zhang, S. Liu, J. Energy Chem. 2018, 27, 1040.
- 9 S. Sinha, D. K. Nandi, S.-H. Kim, J. Heo, Sol. Energy Mater. Sol. Cells 2018, 176, 49.
- 10 J. Lee, T. Enkhbat, G. Han, M. H. Sharif, E. Enkhbayar, H. Yoo, J. H. Kim, S. Kim, J. Kim, Nano Energy 2020, 78, 105206.
- 11 H. Sun, K. Sun, J. Huang, C. Yan, F. Liu, J. Park, A. Pu, J. A. Stride, M. A. Green, X. Hao, ACS Appl. Energy Mater. 2018, 1, 154.
- 12 X. Cui, K. Sun, J. Huang, J. S. Yun, C.-Y. Lee, C. Yan, H. Sun, Y. Zhang, C. Xue, K. Eder, L. Yang, J. M. Cairney, J. Seidel, N. J. Ekins-Daukes, M. Green, B. Hoex, X. Hao, Energy Environ. Sci. 2019, 12, 2751.
- 13 W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Adv. Energy Mater. 2014, 4, 1301465.
- 14 G. Altamura, J. Vidal, Chem. Mater. 2016, 28, 3540.
- 15 S. Kim, J.-S. Park, A. Walsh, ACS Energy Lett. 2018, 3, 496.
- 16 R. Kondrotas, C. Chen, J. Tang, Joule 2018, 2, 857.
- 17 Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R. E. I. Schropp, Y. Mai, Nat. Commun. 2019, 10, 125.
- 18 P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim, C. Yang, R. G. Gordon, Adv. Energy Mater. 2014, 4, 1400496.
- 19 J. Y. Cho, S. Kim, R. Nandi, J. Jang, H.-S. Yun, E. Enkhbayar, J. H. Kim, D.-K. Lee, C.-H. Chung, J. Kim, J. Heo, J. Mater. Chem. A 2020, 8, 20658.
- 20 D.-J. Xue, S.-C. Liu, C.-M. Dai, S. Chen, C. He, L. Zhao, J.-S. Hu, L.-J. Wan, J. Am. Chem. Soc. 2017, 139, 958.
- 21 V. R. Minnam Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci.: Mater. Electron. 2016, 27, 5491.
- 22 L.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci. 2016, 9, 3044.
- 23 W. Shi, M. Gao, J. Wei, J. Gao, C. Fan, E. Ashalley, H. Li, Z. Wang, Adv.Sci. 2018, 5, 1700602.
- 24 V. R. Minnam Reddy, G. Lindwall, B. Pejjai, S. Gedi, T. R. R. Kotte, M. Sugiyama, Z.-K. Liu, C. Park, Sol. Energy Mater. Sol. Cells 2018, 176, 251.
- 25 K. F. Abd El-Rahman, A. A. A. Darwish, E. A. A. El-Shazly, Mater. Sci. Semicond. Process. 2014, 25, 123.
- 26 I. S. Chuprakov, K.-H. Dahmen, J. J. Schneider, J. Hagen, Chem. Mater. 1998, 10, 3467.
- 27 V. E. Drozd, I. O. Nikiforova, V. B. Bogevolnov, A. M. Yafyasov, E. O. Filatova, D. Papazoglou, J. Phys. D Appl. Phys. 2009, 42, 125306.
- 28 T. S. Rao, B. K. Samantharay, A. K. Chaudhuri, J. Mater. Sci. Lett. 1985, 4, 743.
- 29 R. D. Engelken, A. K. Berry, T. P. Van Doren, J. L. Boone, A. Shahnazary, J. Electrochem. Soc. 1986, 133, 581.
- 30 P. Pramanik, S. Bhattacharya, J. Mater. Sci. Lett. 1988, 7, 1305.
- 31 X.-H. Ma, K.-H. Cho, Y.-M. Sung, CrystEngComm 2014, 16, 5080.
- 32 S. Luo, X. Qi, H. Yao, X. Ren, Q. Chen, J. Zhong, J. Phys. Chem. C 2017, 121, 4674.
- 33 F. Davitt, K. Stokes, T. W. Collins, M. Roldan-Gutierrez, F. Robinson, H. Geaney, S. Biswas, S. L. Y. Chang, K. M. Ryan, G. Reid, J. D. Holmes, ACS Appl. Energy Mater. 2020, 3, 6602.
- 34 R. Banai, M. W. Horn, J. Brownson, Sol. Energy Mater. Sol. Cells 2016, 150, 112.
- 35 D. Lim, H. Suh, M. Suryawanshi, G. Y. Song, J. Y. Cho, J. H. Kim, J. H. Jang, C.-W. Jeon, A. Cho, S. Ahn, J. Heo, Adv. Energy Mater. 2018, 8, 1702605.
- 36 D. Lee, J. Y. Cho, H.-S. Yun, D.-K. Lee, T. Kim, K. Bang, Y. S. Lee, H.-Y. Kim, J. Heo, J. Mater. Chem. A 2019, 7, 7186.
- 37 H. S. Lee, J. Y. Cho, R. Nandi, P. S. Pawar, K. E. Neerugatti, C. T. K. Mai, D.-K. Lee, J. Heo, ACS Appl. Energy Mater. 2020, 3, 10393.
- 38 M. Jin, J. Jiang, R. Li, X. Wang, Y. Chen, Y. Chen, J. Xu, Cryst. Res. Technol. 2019, 54, 1900032.
- 39 D. D. Vaughn, S.-I. In, R. E. Schaak, ACS Nano 2011, 5, 8852.
- 40 I. Efthimiopoulos, M. Berg, A. Bande, L. Puskar, E. Ritter, W. Xu, A. Marcelli, M. Ortolani, M. Harms, J. Müller, S. Speziale, M. Koch-Müller, Y. Liu, L.-D. Zhao, U. Schade, Phys. Chem. Chem. Phys. 2019, 21, 8663.
- 41 R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green, T. Chen, Nat. Energy 2020, 5, 587.
- 42 X. Wen, C. Chen, S. Lu, K. Li, R. Kondrotas, Y. Zhao, W. Chen, L. Gao, C. Wang, J. Zhang, G. Niu, J. Tang, Nat. Commun. 2018, 9, 2179.
- 43 X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu, Z. Liu, S. Yuan, J. Khan, D. Li, J. Tang, H. Song, C. Cheng, Nano-Micro Lett. 2017, 9, 24.
- 44 M. Bernechea, N. C. Miller, G. Xercavins, D. So, A. Stavrinadis, G. Konstantatos, Nat. Photon. 2016, 10, 521.
- 45 S. S. Hegedus, W. N. Shafarman, Prog. Photovolt. Res. Appl. 2004, 12, 155.
- 46 B. L. Williams, S. Smit, B. J. Kniknie, K. J. Bakker, W. Keuning, W. Kessels, R. E. Schropp, M. Creatore, Prog. Photovolt. Res. Appl. 2015, 23, 1516.
- 47 C. Wang, D. Zhuang, M. Zhao, Y. Wei, X. Lyu, G. Ren, Y. Wu, L. Hu, Y. Li, Q. Gong, J. Wei, Sol. Energy 2019, 194, 11.
- 48 C. Wang, D. Zhuang, M. Zhao, G. Ren, Y. Li, J. Wei, Q. Gong, L. Dong, J. Power Sources 2020, 479, 229105.
- 49 M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 2019, 9, 1863.
- 50 D.-H. Son, S.-H. Kim, S.-Y. Kim, Y.-I. Kim, J.-H. Sim, S.-N. Park, D.-H. Jeon, D.-K. Hwang, S.-J. Sung, J.-K. Kang, K.-J. Yang, D.-H. Kim, J. Mater. Chem. A 2019, 7, 25279.
- 51 S. Liu, N. Sun, M. Liu, S. Sucharitakul, X. P. A. Gao, J. Appl. Phys. 2018, 123, 115109.
- 52 G. Jeong, J. Kim, O. Gunawan, S. R. Pae, S. H. Kim, J. Y. Song, Y. S. Lee, B. Shin, J. Alloys Compd. 2017, 722, 474.
- 53 A. Sillen, Y. Engelborghs, Photochem. Photobiol. 1998, 67, 475.
- 54 D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N.-G. Park, Nat. Energy 2016, 1, 16081.
- 55 L. Hao, Y. Du, Z. Wang, Y. Wu, H. Xu, S. Dong, H. Liu, Y. Liu, Q. Xue, Z. Han, K. Yan, M. Dong, Nanoscale 2020, 12, 7358.
- 56 R. Jaramillo, M.-J. Sher, B. K. Ofori-Okai, V. Steinmann, C. Yang, K. Hartman, K. A. Nelson, A. M. Lindenberg, R. G. Gordon, T. Buonassisi, J. Appl. Phys. 2016, 119, 035101.
- 57 Y. K. Lee, Z. Luo, S. P. Cho, M. G. Kanatzidis, I. Chung, Joule 2019, 3, 719.
- 58 L. Huang, J. Lu, D. Ma, C. Ma, B. Zhang, H. Wang, G. Wang, D. H. Gregory, X. Zhou, G. Han, J. Mater. Chem. A 2020, 8, 1394.
- 59 A. M. A. Haleem, M. Ichimura, J. Appl. Phys. 2010, 107, 034507.
- 60 G. Li, Z. Li, X. Liang, C. Guo, K. Shen, Y. Mai, ACS Appl. Mater. Interfaces 2019, 11, 828.
- 61 T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Sol. Energy Mater. Sol. Cells 2001, 67, 83.
- 62 J. P. Singh, R. K. Bedi, Jpn. J. Appl. Phys. 1990, 29, L792.
- 63 Z. Li, Y. Guo, F. Zhao, C. Nie, H. Li, J. Shi, X. Liu, J. Jiang, S. Zuo, RSC Adv. 2020, 10, 16749.