Cerium-Based Metal–Organic Frameworks with UiO Architecture for Visible Light-Induced Aerobic Oxidation of Benzyl Alcohol
Xueying Qiu
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorYanfei Zhu
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorXiaofei Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorYin Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorLeta Takele Menisa
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorChonghan Xia
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shaoqin Liu
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Zhiyong Tang
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorXueying Qiu
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorYanfei Zhu
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorXiaofei Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorYin Zhang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorLeta Takele Menisa
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorChonghan Xia
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shaoqin Liu
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
Search for more papers by this authorCorresponding Author
Zhiyong Tang
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080 China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
Search for more papers by this authorAbstract
Metal–organic frameworks (MOFs), a new fascinating class of photocatalysts, have attracted considerable interest in the past few years. Unfortunately, the photocatalytic activities of most pristine MOFs are limited by their intrinsic drawbacks such as limited visible light absorption and poor charge separation efficiency. Herein, a series of Ce-UiOs are constructed through metal substitution and ligand modification, and their photocatalytic properties are studied systematically. Due to the low-lying empty 4f orbitals of Ce, the light absorption range of as-prepared Ce-UiO MOFs is extended to the visible light region. Moreover, their negative ligand-to-metal charge transfer energy (ELMCT) facilitates the separation of charge carriers, which leads to the efficient visible light oxidation of benzyl alcohol. The possible reaction mechanism is validated by electrochemical test and photoluminescence spectroscopy. This work provides an entire new set of Ce-MOFs-based photocatalysts for future important inorganic reactions.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
solr201900449-sup-0001-SuppData-S1.docx3.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 2014, 43, 473.
- 2A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134.
- 3T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982.
- 4L. Jiao, Y. Wang, H. L. Jiang, Q. Xu, Adv. Mater. 2018, 30, e1703663.
- 5M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76.
- 6Y. Zhang, J. Guo, L. Shi, Y. Zhu, K. Hou, Y. Zheng, Z. Tang, Sci. Adv. 2017, 3, e1701162.
- 7J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang, J. Yao, Appl. Catal. B 2018, 231, 317.
- 8G. Li, S. Zhao, Y. Zhang, Z. Tang, Adv. Mater. 2018, 30, e1800702.
- 9J. D. Xiao, H. L. Jiang, Acc. Chem. Res. 2019, 52, 356.
- 10K. Hendrickx, J. J. Joos, A. De Vos, D. Poelman, P. F. Smet, V. Van Speybroeck, P. Van Der Voort, K. Lejaeghere, Inorg. Chem. 2018, 57, 5463.
- 11X. P. Wu, L. Gagliardi, D. G. Truhlar, J. Am. Chem. Soc. 2018, 140, 7904.
- 12C. Zhang, Y. Xu, C. Lv, X. Zhou, Y. Wang, W. Xing, Q. Meng, Y. Kong, G. Chen, ACS Appl. Mater. Interfaces 2019, 11, 29917.
- 13J. Gascon, M. D. Hernandez-Alonso, A. R. Almeida, G. P. van Klink, F. Kapteijn, G. Mul, ChemSusChem 2008, 1, 981.
- 14C. G. Silva, I. Luz, F. X. L. I. Xamena, A. Corma, H. Garcia, Chem. Eur. J. 2010, 16, 11133.
- 15S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M. H. Nilsen, L. Valenzano, C. Lamberti, K. P. Lillerud, S. Bordiga, Phys. Chem. Chem. Phys. 2012, 14, 1614.
- 16J. G. Santaclara, M. A. Nasalevich, S. Castellanos, W. H. Evers, F. C. Spoor, K. Rock, L. D. Siebbeles, F. Kapteijn, F. Grozema, A. Houtepen, J. Gascon, J. Hunger, M. A. van der Veen, ChemSusChem 2016, 9, 388.
- 17M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. D. Vos, N. Stock, Chem. Commun. 2015, 51, 12578.
- 18S. Smolders, A. Struyf, H. Reinsch, B. Bueken, T. Rhauderwiek, L. Mintrop, P. Kurz, N. Stock, D. E. De Vos, Chem. Commun. 2018, 54, 876.
- 19M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632.
- 20T. Islamoglu, A. Atilgan, S.-Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, O. K. Farha, Chem. Mater. 2017, 29, 2672.
- 21X. J. Hong, C. L. Song, Y. Yang, H. C. Tan, G. H. Li, Y. P. Cai, H. Wang, ACS Nano 2019, 13, 1923.
- 22J. Park, M. Lee, D. Feng, Z. Huang, A. C. Hinckley, A. Yakovenko, X. Zou, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2018, 140, 10315.
- 23Z. Yang, X. Xu, X. Liang, C. Lei, Y. Wei, P. He, B. Lv, H. Ma, Z. Lei, Appl. Catal. B 2016, 198, 112.
- 24J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wang, Chem. Commun. 2012, 48, 11656.
- 25L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 2013, 42, 13649.
- 26T. W. Goh, C. Xiao, R. V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 2015, 124, 45.
- 27E. Cerrato, C. Gionco, M. C. Paganini, E. Giamello, J. Phys. Condens. Matter 2017, 29, 444001.
- 28M. A. D. Hernández-Alonso, A. B. Hungría, A. Martínez-Arias, M. Fernández-García, J. M. Coronado, J. C. Conesa, J. Soria, Appl. Catal. B 2004, 50, 167.