Pyridinic-N Seized Co in Biphasic Nanoarchitecture for Reversible Oxygen Electrocatalysis Enabling Longevous (>1200 h) Aqueous and Dual-Anion Kosmotropic Electrolyte Stabilized High Power Quasisolid-State Zn–Air Battery
Srijib Das
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSaikat Bolar
School of Environmental Science and Engineering, Kochi University of Technology, Kochi, 782-8502 Japan
Search for more papers by this authorErakulan E. Siddharthan
Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorArupjyoti Pathak
Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorRanjit Thapa
Center for Computational and Integrative Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorUjjwal Phadikar
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorHaradhan Kolya
Department of Housing Environmental Design, and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorChun-Won Kang
Department of Housing Environmental Design, and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorTapas Kuila
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorNaresh Chandra Murmu
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorCorresponding Author
Aniruddha Kundu
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
E-mail: [email protected]
Search for more papers by this authorSrijib Das
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
Search for more papers by this authorSaikat Bolar
School of Environmental Science and Engineering, Kochi University of Technology, Kochi, 782-8502 Japan
Search for more papers by this authorErakulan E. Siddharthan
Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorArupjyoti Pathak
Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorRanjit Thapa
Center for Computational and Integrative Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240 India
Search for more papers by this authorUjjwal Phadikar
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorHaradhan Kolya
Department of Housing Environmental Design, and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorChun-Won Kang
Department of Housing Environmental Design, and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk, 54896 Republic of Korea
Search for more papers by this authorTapas Kuila
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorNaresh Chandra Murmu
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
Search for more papers by this authorCorresponding Author
Aniruddha Kundu
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn–air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates. Consequently, the well-designed catalyst with accessible active sites, abundant oxygen vacant sites, and heterointerfacial coupling effects, simultaneously accelerate the electron/mass transfer and thus promotes the trifunctional electrocatalysis. The assembled aqueous ZAB delivers maximum power density of ≈268 mW cm−2 and a specific capacity of 797.8 mAh gzn−1 along with excellent rechargeability and extremely small voltage gap decay rate of 0.0007 V h−1. Further, the fabricated quasisolid-state ZAB owns a remarkable power density of 163 mW cm−2 and long cycle life, outperforming the benchmark air-electrode and many recent reports, underlining its robustness and suitability for practical utilization in diverse portable applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401874-sup-0001-SuppMat.pdf16.6 MB | Supporting Information |
smtd202401874-sup-0002-VideoS1.mp41.5 MB | Supplemental Video 1 |
smtd202401874-sup-0003-VideoS2.mp429.7 MB | Supplemental Video 2 |
smtd202401874-sup-0004-VideoS3.mp429.3 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem 2000, 1, 162.
10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 2S. Neaţu, F. Neaţu, I. M. Chirica, I. Borbáth, E. Tálas, A. Tompos, S. Somacescu, P. Osiceanu, M. A. Folgado, A. M. Chaparro, M. Florea, J. Mater. Chem. A 2021, 9, 17065.
- 3W. Li, C. Wang, X. Lu, J. Mater. Chem. A 2021, 9, 3786.
- 4Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109.
- 5W.-J. Kwak, D. S. Rosy, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y.-K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurbach, Chem. Rev. 2020, 120, 6626.
- 6T. K. Kundu, N. C. Murmu, P. Samanta, S. Das, Mater. Horiz. 2023, 10, 745.
- 7S. Das, A. Kundu, T. Kuila, N. C. Murmu, Energy Storage Mater. 2023, 61, 102890.
- 8E. Davari, D. G. Ivey, Sustainable Energy Fuels 2018, 2, 39.
- 9H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414.
- 10S. M. Kundu, S. Ghora, C. R. Raj, ACS Appl. Mater. Interfaces 2021, 13, 40172.
- 11S. B. Kundu, S. Das, H. Kolya, C.-W. Kang, T. Kuila, N. C. Murmu, ACS Appl. Energy Mater. 2022, 5, 14445.
- 12Y. Gorlin, T. F. Jaramillo, J. Am. Chem. Soc. 2010, 132, 13612.
- 13X. Wu, Y. Cheng, J.-P. Veder, S. P. Jiang, Energy Environ. Mater. 2021, 4, 474.
- 14S. Bag, K. Roy, C. S. Gopinath, C. R. Raj, ACS Appl. Mater. Interfaces 2014, 6, 2692.
- 15S. Bag, B. Mondal, A. K. Das, C. R. Raj, Electrochim. Acta 2015, 163, 16.
- 16C.-H. Kuo, I. M. Mosa, A. S. Poyraz, S. Biswas, A. M. El-Sawy, W. Song, Z. Luo, S.-Y. Chen, J. F. Rusling, J. He, S. L. Suib, ACS Catal. 2015, 5, 1693.
- 17Z. Jin, A. J. Bard, Angew. Chem. 2021, 133, 807.
- 18H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688.
- 19H. Xu, Z. X. Shi, Y. X. Tong, G. R. Li, Adv. Mater. 2018, 30, 1705442.
- 20Q. Qin, P. Li, L. Chen, X. Liu, ACS Appl. Mater. Interfaces 2018, 10, 39828.
- 21G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.-M. Lee, Y. Tang, Adv. Mater. 2018, 30, 1704609.
- 22Z.-J. T. Chen, J.-Y. Li, C.-Y. Du, T. Ouyang, K. Xiao, Z.-Q. Liu, Adv. Funct. Mater. 2022, 33, 2210143.
- 23X. F. Lu, Y. Chen, S. Wang, S. Gao, X. W. Lou, Adv. Mater. 2019, 31, 1902339.
- 24B. K. B. Samanta, S. Mallick, C. R. Raj, ACS Appl. Energy Mater. 2020, 3, 10108.
- 25G. Janani, S. Surendran, H. Choi, M.-K. Han, U. Sim, Small 2021, 17, 2103613.
- 26J. Wei, J. Lou, W. Hu, X. Song, H. Wang, Y. Yang, Y. Zhang, Z. Jiang, B. Mei, L. Wang, T. Yang, Q. Wang, X. Li, Small 2024, 20, 2308956.
- 27S. Z. Zhou, H. Meng, Y. Han, Q. Jiang, B. Wang, X. Shi, W. Zhang, L. Zhang, R. Zhang, Nano Lett. 2021, 21, 9633.
- 28Y. Gao, D. Zheng, Q. Li, W. Xiao, T. Ma, Y. Fu, Z. Wu, L. Wang, Adv. Funct. Mater. 2022, 32, 2203206.
- 29J. Qu, Z. Wang, W. Gan, R. Xiao, X. Yao, Z. Khanam, L. Ouyang, H. Wang, H. Yang, S. Zhang, M.-S. Balogun, Small 2024, 20, 2304541.
- 30Q. P. Ngo, T. T. Nguyen, M. Singh, N. H. Kim, J. H. Lee, J. Mater. Chem. A 2024, 12, 1185.
- 31J. Fu, D. Lee, F. Hanssan, L. Yang, Z. Bai, M. Park, Z. Chen, Adv. Mater. 2017, 29, 1604685.
- 32H. Li, W. Wang, S. Xue, J. He, C. Liu, G. Gao, S. Di, S. Wang, J. Wang, Z. Yu, L. Li, J. Am. Chem. Soc. 2024, 146, 9124.
- 33T. N. T. Tran, D. Aasen, D. Zhalmuratova, M. Labbe, H.-J. Chung, D. G. Ivey, Batteries Supercaps 2020, 3, 917.
- 34Z. Chen, K. Wang, Y. Fu, Y. Zuo, M. Wei, J. Xiong, H. Wang, P. Zhang, N. Shang, D. Zhong, P. Pei, Adv. Funct. Mater. 2023, 33, 2306223.
- 35M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun, Z. Wang, B. Zhang, L. Song, Y. Yang, C. Ma, Y. Han, W. Huang, Energy Environ. Sci. 2021, 14, 6455.
- 36H. Miao, B. Chen, S. Li, X. Wu, Q. Wang, C. Zhang, Z. Sun, H. Li, J. Power Sources 2020, 450, 227653.
- 37Y. Zhu, D. Zheng, X. Xing, S. Wu, X. Guo, J. Liu, X. Guo, J. Zhou, Y. Jiao, B. Zeng, N. Wang, L. Wan, H. Zhang, S. Liu, J. Phys. Chem. C 2024, 128, 7007.
- 38A. S. Kundu, C. R. Raj, ACS Appl. Mater. Interfaces 2021, 13, 30486.
- 39C. Z. Wang, M. Yu, W. Wang, Appl. Catal., B 2021, 281, 119514.
- 40Y. Z. Guo, J. Ran, F. Xie, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2017, 56, 8539.
- 41P. Rao, Y. Liu, Y.-Q. Su, M. Zhong, K. Zhang, J. Luo, J. Li, C. Jia, Y. Shen, C. Shen, X. Tian, Chem. Eng. J. 2021, 422, 130135.
- 42L. C. Tang, H.-J. Li, L.-Q. Li, Y. Jiao, Y. Zheng, H. Xu, K. Davey, S.-Z. Qiao, J. Am. Chem. Soc. 2021, 143, 7819.
- 43H. S. Jung, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. H. Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 2020, 19, 436.
- 44X. F. Lu, A. L. Wang, H. Xu, X. J. He, Y. X. Tong, G. R. Li, J. Mater. Chem. A 2015, 3, 16560.
- 45N. Sun, Q. Z. Zhu, B. Anasori, P. Zhang, H. Liu, Y. Gogotsi, B. Xu, Adv. Funct. Mater. 2019, 29, 1906282.
- 46Y. Jiang, Y.-P. Deng, J. Fu, D. U. Lee, R. Liang, Z. P. Cano, Y. Liu, Z. Bai, S. Hwang, L. Yang, D. Su, W. Chu, Z. Chen, Adv. Energy Mater. 2018, 8, 1702900.
- 47Q. Ji, L. Bi, J. Zhang, H. Cao, X. S. Zhao, Energy Environ. Sci. 2020, 13, 1408.
- 48M. Zhang, J. Gao, W. Hong, X. Wang, Q. Tian, Z. An, L. Wang, H. Yao, Y. Liu, X. Zhao, H. Qiu, J. Colloid Interface Sci. 2019, 537, 238.
- 49K. Zeng, W. Li, Y. Zhou, Z. Sun, C. Lu, J. Yan, J.-H. Choi, R. Yang, Chem. Eng. J. 2021, 421, 127831.
- 50W. Chen, Y. Liu, Y. Li, J. Sun, Y. Qiu, C. Liu, G. Zhou, Y. Cui, Nano Lett. 2016, 16, 7588.
- 51K. Jin, H. Seo, T. Hayashi, M. Balamurugan, D. Jeong, Y. K. Go, J. S. Hong, K. H. Cho, H. Kakizaki, N. Bonnet-Mercier, M. G. Kim, S. H. Kim, R. Nakamura, K. T. Nam, J. Am. Chem. Soc. 2017, 139, 2277.
- 52J. Lu, H. Wang, Y. Sun, X. Wang, X. Song, R. Wang, Chem. Eng. J. 2021, 417, 127894.
- 53B. S. Yeo, A. T. Bell, J. Am. Chem. Soc. 2011, 133, 5587.
- 54K. Li, D. Xue, J. Phys. Chem. A 2006, 110, 11332.
- 55M. R. G. de Chialvo, A. C. Chialvo, J. Electroanal. Chem. 1994, 372, 209.
- 56A. Lasia, Int. J. Hydrog. Energy 2019, 44, 19484.
- 57W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 2013, 6, 1509.
- 58K. S. Zhao, W.-C. Cheong, L. Zheng, C. Zhang, S. Liu, X. Cao, K. Wu, Y. Pan, Z. Zhuang, B. Hu, D. Wang, Q. Peng, C. Chen, Y. Li, Angew. Chem., Int. Ed. 2020, 59, 8982.
- 59M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J. Zhong, Y. Li, Adv. Funct. Mater. 2016, 26, 4397.
- 60J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.
- 61P. B. Jagdale, S. A. Patil, A. Pathak, M. Sk, R. Thapa, A. Sfeir, S. Royer, A. K. Samal, M. Saxena, J. Mater. Chem. A 2025, 13, 1830.
- 62M. Liu, J. Zhang, H. Su, Y. Jiang, W. Zhou, C. Yang, S. Bo, J. Pan, Q. Liu, Nat. Commun. 2024, 15, 1675.
- 63S. Das, A. Pathak, U. Phadikar, C. Kuila, A. Maji, T. Kuila, N. C. Murmu, R. Thapa, A. Kundu, Adv. Funct. Mater. 2024, 34, 2407078.
- 64J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Carbon 1995, 33, 1641.
- 65S. Das, S. Dey, U. Phadikar, H. Kolya, C.-W. Kang, N. C. Murmu, T. Kuila, A. Kundu, J. Colloid Interface Sci. 2025, 683, 818.
- 66M. Du, B. Chu, Q. Wang, C. Li, Y. Lu, Z. Zhang, X. Xiao, C.-Q. Xu, M. Gu, J. Li, H. Pang, Q. Xu, Adv. Mater. 2024, 36, 2412978.
- 67Z. Pei, Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, Y. Chen, Angew. Chem., Int. Ed. 2020, 59, 4793.
- 68P. Wang, S. Liang, C. Chen, X. Xie, J. Chen, Z. Liu, Y. Tang, B. Lu, J. Zhou, Adv. Mater. 2022, 34, 2202733.
- 69R. P. Chen, Q. Liu, L. Xu, X. R. Zuo, F. Liu, J. Y. Zhang, X. Zhou, L. Q. Mai, ACS Energy Lett. 2022, 7, 1719.
- 70L. Hong, X. Wu, L. Y. Wang, M. Zhong, P. Zhang, L. Jiang, W. Huang, Y. Wang, K. X. Wang, J. S. Chen, ACS Nano 2022, 16, 6906.