Mechanically Robust 3D Flexible Electrodes via Embedding Conductive Nanomaterials in the Surface of Polymer Networks
Sangmok Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorCorresponding Author
Dongwoo Yoo
Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan, Chungnam, 31080 South Korea
Industrial Technology Research Institute, Kongju National University, Cheonan, Chungnam, 31080 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Joonwon Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorSangmok Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673 South Korea
Search for more papers by this authorCorresponding Author
Dongwoo Yoo
Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan, Chungnam, 31080 South Korea
Industrial Technology Research Institute, Kongju National University, Cheonan, Chungnam, 31080 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Joonwon Kim
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673 South Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
3D flexible electrodes are essential to implement flexible pressure sensors in various flexible electronic applications. Conventional methods for fabricating these electrodes include electroless deposition, spray coating, and incorporating conductive nanomaterials into a polymer matrix. However, the electrodes fabricated using these methods are characterized by poor adhesion between the conductive layer and polymer surface and fail to maintain intrinsic mechanical properties of the polymer, such as elastic modulus and ductility. Herein, a transfer method in which conductive nanomaterials are embedded into the surface of polymer networks via optimal surface energy control is proposed, such as reducing adhesion between the mold and nanomaterials. This method induces mechanical interlocking between the surface of polymer networks and conductive nanomaterials, firmly anchoring them onto the polymer network surface. Moreover, the intrinsic mechanical properties of the fabricated 3D flexible electrodes remain unchanged. Flexible capacitive sensors prepared using the resulting electrodes exhibit a stable sensing performance (ΔC0,5000/C0 = 0.169%) even under repetitive pressure conditions (5000 cycles at 70 kPa). The proposed robust 3D flexible electrode fabrication method presents a promising strategy for the future development of flexible pressure sensors.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202401839-sup-0001-SuppMat.docx3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Yang, W. R. Leow, X. Chen, Small Methods 2018, 2, 1700259.
- 2D. Yoo, S. Kim, W. Cho, J. Park, J. Kim, Small Methods 2022, 6, 2100869.
- 3D. Yoo, D.-J. Won, W. Cho, S. Kim, J. Kim, Small Methods 2021, 5, 2101049.
- 4D. Yoo, D.-J. Won, W. Cho, J. Lim, J. Kim, Adv. Mater. Technol. 2021, 6, 2100358.
- 5N. M. Nair, I. Khanra, D. Ray, P. Swaminathan, ACS Appl. Mater. Interfaces. 2021, 13, 34550.
- 6H.-C. Cheng, W.-H. Xu, W.-H. Chen, P.-H. Wang, K.-F. Chen, C.-C. Chang, Adv. Mater. Sci. Eng. 2015, 2015, 106424.
- 7B. Wang, A. Facchetti, Adv. Mater. 2019, 31, 1901408.
- 8W.-D. Li, K. Ke, J. Jia, J.-H. Pu, X. Zhao, R.-Y. Bao, Z.-Y. Liu, L. Bai, K. Zhang, M.-B. Yang, W. Yang, Small 2022, 18, 2103734.
- 9X. Wang, Z. Liu, T. Zhang, Small 2017, 13, 1602790.
- 10Y. Liu, M. Pharr, G. A. Salvatore, ACS Nano 2017, 11, 9614.
- 11Q. Du, L. Liu, R. Tang, J. Ai, Z. Wang, Q. Fu, C. Li, Y. Chen, X. Feng, Adv. Mater. Technol. 2021, 6, 2100122.
- 12X. Hu, M. Wu, L. Che, J. Huang, H. Li, Z. Liu, M. Li, D. Ye, Z. Yang, X. Wang, Z. Xie, J. Liu, Small 2023, 19, 2208015.
- 13L. Viry, A. Levi, M. Totaro, A. Mondini, V. Mattoli, B. Mazzolai, L. Beccai, Adv. Mater. 2014, 26, 2659.
- 14Y. Zhang, Y. Fang, J. Li, Q. Zhou, Y. Xiao, K. Zhang, B. Luo, J. Zhou, B. Hu, ACS Appl. Mater. Interfaces. 2017, 9, 37493.
- 15S. H. Cho, S. W. Lee, S. Yu, H. Kim, S. Chang, D. Kang, I. Hwang, H. S. Kang, B. Jeong, E. H. Kim, S. M. Cho, K. L. Kim, H. Lee, W. Shim, C. Park, ACS Appl. Mater. Interfaces. 2017, 9, 10128.
- 16C. Ma, D. Xu, Y.-C. Huang, P. Wang, J. Huang, J. Zhou, W. Liu, S.-T. Li, Y. Huang, X. Duan, ACS Nano 2020, 14, 12866.
- 17B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625.
- 18H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, L. Li, ACS Appl. Mater. Interfaces. 2018, 10, 20826.
- 19Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian, D. Xiong, N. Chen, X. Chu, S. Zhong, W. Deng, Y. Fang, W. Yang, Adv. Funct. Mater. 2020, 30, 1909603.
- 20Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.-B. Xu, ACS Nano 2017, 11, 4507.
- 21G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan, X. He, T. Yang, L. Jin, X. Chu, H. Zhang, W. Yan, W. Yang, Nano Energy 2019, 59, 574.
- 22W. Ding, A. C. Wang, C. Wu, H. Guo, Z. L. Wang, Adv. Mater. Technol. 2019, 4, 1800487.
- 23T. Yang, D. Xie, Z. Li, H. Zhu, Mater. Sci. Eng. R-Rep. 2017, 115, 1.
- 24S. Kim, D. Yoo, J. Lim, J. Kim, Adv. Mater. Technol. 2024, 9, 2301589.
- 25J. Yang, S. Luo, X. Zhou, J. Li, J. Fu, W. Yang, D. Wei, ACS Appl. Mater. Interfaces. 2019, 11, 14997.
- 26S. S. Hassouneh, L. Yu, A. L. Skov, A. E. Daugaard, J. Appl. Polym. Sci. 2017, 134, 44767.
- 27J. Du, L. Wang, Y. Shi, F. Zhang, S. Hu, P. Liu, A. Li, J. Chen, Sensors 2020, 20, 4523.
- 28Y. Li, X. Liu, J. Liu, S. Xiang, Polym. Compos. 2022, 43, 5390.
- 29F. Lin, W. Cheng, Adv. Electron. Mater. 2023, 9, 2300334.
- 30X. Wang, C. Yan, H. Hu, X. Zhou, R. Guo, X. Liu, Z. Xie, Z. Huang, Z. Zheng, Chem. Asian J. 2014, 9, 2170.
- 31O. Azzaroni, Z. Zheng, Z. Yang, W. T. S. Huck, Langmuir 2006, 22, 6730.
- 32J.-Y. Lee, D. Shin, J. Park, Thin Solid Films 2016, 608, 34.
- 33Z. Gao, C. Zhang, Q. Wang, G. Xu, G. Gan, H. Zhang, Materials 2024, 17, 1620.
- 34H. Kang, H. Kim, S. Kim, H. J. Shin, S. Cheon, J.-H. Huh, D. Y. Lee, S. Lee, S.-W. Kim, J. H. Cho, Adv. Funct. Mater. 2016, 26, 7717.
- 35D. Yoo, S. Kim, J. Hwang, J. Kim, in Proc. IEEE 36th Int. Conf. on Micro Electro Mechanical Systems (MEMS), IEEE, Munich, 2023.
- 36X. Guo, D. Zhou, W. Hong, D. Wang, T. Liu, D. Wang, L. Liu, S. Yu, Y. Song, S. Bai, Y. Li, Q. Hong, Y. Zhao, L. Xiang, Z. Mai, G. Xing, Small 2022, 18, 2203044.
- 37L. Song, P. A. Yang, Y. Ding, C. Mo, Y. Yang, Y. Gui, Y. Shao, Q. Chen, IEEE Sensors J 2024, 24, 33048.
- 38J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, S. K. Chung, Sens. Actuator A-Phys. 2014, 215, 8.
- 39H. Devaraj, R. Schober, M. Picard, M. Y. Teo, C.-Y. Lo, W. C. Gan, K. C. Aw, Meas.: Sens 2019, 2–4, 100004.
10.1016/j.measen.2020.100004 Google Scholar
- 40R. Han, Y. Liu, Y. Mo, H. Xu, Z. Yang, R. Bao, C. Pan, Adv. Funct. Mater. 2023, 33, 2305531.
- 41B. Nie, R. Li, J. Cao, J. D. Brandt, T. Pan, Adv. Mater. 2015, 27, 6055.
- 42S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, W. Matusik, Nature 2019, 569, 698.
- 43J. Luo, L. Zhang, T. Wu, H. Song, C. Tang, Extreme Mech. Lett. 2021, 48, 101279.
- 44X. Cui, F. Huang, X. Zhang, P. Song, H. Zheng, V. Chevali, H. Wang, Z. Xu, iScience 2022, 25, 104148.
- 45X. Wang, Z. Xia, C. Zhao, P. Huang, S. Zhao, M. Gao, J. Nie, Sens. Actuator A-Phys. 2020, 312, 112147.
- 46J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang, K. Bi, Y.-X. Zhang, Y. Zhao, Z.-M. Dang, Adv. Mater. 2021, 33, 2008267.
- 47Y.-C. Huang, Y. Liu, C. Ma, H.-C. Cheng, Q. He, H. Wu, C. Wang, C.-Y. Lin, Y. Huang, X. Duan, Nat. Electron. 2020, 3, 59.
- 48J. Yao, C. Qu, Z. Chen, Y. Zhang, Y. Xu, ACS Appl. Electron. Mater. 2024, 6, 2649.
- 49Q. Chen, J. Yang, B. Chen, J. Feng, S. Xiao, Q. Yue, X. Zhang, T. Wang, ACS Appl. Mater. Interfaces. 2022, 14, 44642.
- 50M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 2016, 26, 1678.
- 51Y. Zang, F. Zhang, C.-a. Di, D. Zhu, Mater. Horiz. 2015, 2, 140.
- 52L. Zhang, S. Zhang, C. Wang, Q. Zhou, H. Zhang, G.-B. Pan, ACS Sens. 2021, 6, 2630.
- 53C. Liu, F. Ma, Q. Sun, Q. Hu, W. Tong, X. Guo, R. Hu, P. Liu, Y. Huang, X. Hao, W. Ma, Y. Zhang, ACS Appl. Mater. Interfaces. 2024, 16, 34042.
- 54R. Qin, M. Hu, X. Li, T. Liang, H. Tan, J. Liu, G. Shan, Microsyst. Nanoeng. 2021, 7, 100.
- 55J. Yang, K. Y. Kwon, S. Kanetkar, R. Xing, P. Nithyanandam, Y. Li, W. Jung, W. Gong, M. Tuman, Q. Shen, M. Wang, T. Ghosh, K. Chatterjee, X. Wang, D. Zhang, T.-i. Kim, V. K. Truong, M. D. Dickey, Adv. Mater. Technol. 2022, 7, 2101074.