Ultrafast Synthesis of Hard Carbon Anodes for Sodium-ion Batteries: An Intense-Pulsed-Light-Assisted Approach to Photothermal Carbonization of Polymer/Carbon Nanotube Composite Films
Gyeongbeom Ryoo
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
Search for more papers by this authorMi-Jeong Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorMin Su Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Carbon Hive, Miryang-si, 50404 Republic of Korea
Search for more papers by this authorSunghyeon Shin
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorByeong Guk Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorDo Geun Lee
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
Search for more papers by this authorYujin Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Electronics Engineering, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorHyunjeong Seo
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Electronics Engineering, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorJoon Young Cho
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Search for more papers by this authorJoong Tark Han
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorSeung Yol Jeong
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorJungmo Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong Yun Lee
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hee Jin Jeong
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jong Hwan Park
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGyeongbeom Ryoo
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
Search for more papers by this authorMi-Jeong Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorMin Su Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Carbon Hive, Miryang-si, 50404 Republic of Korea
Search for more papers by this authorSunghyeon Shin
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorByeong Guk Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorDo Geun Lee
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
Search for more papers by this authorYujin Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Electronics Engineering, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorHyunjeong Seo
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Department of Electronics Engineering, Pusan National University, Busan, 46241 Republic of Korea
Search for more papers by this authorJoon Young Cho
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Search for more papers by this authorJoong Tark Han
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorSeung Yol Jeong
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorJungmo Kim
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong Yun Lee
Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hee Jin Jeong
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jong Hwan Park
Nano Hybrid Technology Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, 51543 Republic of Korea
Electric Energy & Material Engineering, KERI School, University of Science and Technology (UST), Changwon, 51543 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min. The SWCNTs efficiently absorbed light energy, enabling ultrafast heating and eliminating the need for prolonged, high-energy furnace-based processes. The IPL-assisted HC anodes exhibited excellent electrochemical performance, with an initial desodiation capacity of 260.4 mAh g⁻¹anode and 97.5% capacity retention after 200 cycles. These results are comparable to those achieved using traditional furnace-based carbonization processes, such as carbonizing HC anodes at 1200 °C, validating the effectiveness of IPL-assisted processes. Additionally, surface and structural analyses revealed the development of pseudo-graphitic domains, crucial for enhanced sodium-ion storage. This research highlights IPL-assisted photothermal carbonization as a viable, time-efficient, and energy-saving alternative to conventional methods, offering a sustainable pathway for the large-scale production of HC anodes for future sodium-ion battery technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401801-sup-0001-SuppMat.docx2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Vaalma, D. Buchholz, M. Weil, S. Passerini, Nat. Rev. Mater. 2018, 3, 18013.
- 2L. Zhao, T. Zhang, W. Li, T. Li, L. Zhang, X. Zhang, Z. Wang, Engineering 2023, 24, 172.
- 3R. Wanison, W. N. H. Syahputra, N. Kammuang-lue, P. Sakulchangsatjatai, C. Chaichana, V. U. Shankar, P. Suttakul, Y. Mona, J. Energy Storage 2024, 100, 113497.
- 4X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Mater. Today 2019, 23, 87.
- 5M. Thompson, Q. Xia, Z. Hu, X. S. Zhao, Mater. Adv. 2021, 2, 5881.
- 6D. Alvira, D. Antorán, J. J. Manyà, Chem. Eng. J. 2022, 447, 137468.
- 7H.-l. Wang, Z.-q. Shi, J. Jin, C.-b. Chong, C.-y. Wang, J. Electroanal. Chem. 2015, 755, 87.
- 8Y. Li, M. P. Paranthaman, K. Akato, A. K. Naskar, A. M. Levine, R. J. Lee, S. O. Kim, J. Zhang, S. Dai, A. Manthiram, J. Power Sources 2016, 316, 232.
- 9J. F. Peters, M. Abdelbaky, M. Baumann, M. Weil, Matériaux & Techniques 2019, 107, 503.
- 10Y. R. Jang, S. J. Joo, J. H. Chu, H. J. Uhm, J. W. Park, C. H. Ryu, M. H. Yu, H. S. Kim, Int. J. Precis. Eng. Manuf. – Green Technol. 2021, 8, 327.
- 11K. Jang, S. Yu, S. H. Park, H. S. Kim, H. Ahn, J. Alloys Compd. 2015, 618, 227.
- 12D. P. Song, W. Li, J. Park, H. F. Fei, A. R. Naik, S. Li, Y. Zhou, Y. Gai, J. J. Watkins, Carbon 2021, 174, 439.
- 13B. Tashbayev, M. Yazdani, R. Arita, F. Fineide, T. P. Utheim, Ocul. Surf. 2020, 18, 583.
- 14J. H. Jang, K. Lee, S. H. Nam, J. Kim, J. Y. Kim, H. Tchah, H. Lee, Sci. Rep. 2023, 13, 6700.
- 15G. Y. Park, M. J. Kim, J. Y. Oh, H. Kim, B. Kang, S. K. Cho, W. J. Choi, M. Kim, D. S. Ham, ACS Appl. Mater. Interfaces 2024, 16, 27410.
- 16G. Ryoo, J. Shin, B. G. Kim, D. G. Lee, J. T. Han, B. Park, Y. Oh, S. Y. Jeong, S. H. Lee, D. Y. Lee, D. Kim, J. H. Park, Chem. Eng. J. 2024, 496, 154081.
- 17V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin, S. Martinet, J. Energy Chem. 2016, 25, 761.
- 18E. Irisarri, N. Amini, S. Tennison, C. M. Ghimbeu, J. Gorka, C. Vix-Guterl, A. Ponrouch, M. R. Palacin, J. Electrochem. Soc. 2018, 165, A4058.
- 19J. B. Kim, G. H. Lee, V. W.-h. Lau, J. Zhang, F. Zou, M. Chen, L. Zhou, K. W. Nam, Y. M. Kang, J. Phys. Chem. C 2021, 125, 14559.
- 20X. S. Wu, X. L. Dong, B. Y. Wang, J. L. Xia, W. C. Li, Renew. Energy 2022, 189, 630.
- 21C. Park, S. Kim, H. Lee, J. W. Park, M. Choi, K. Do, C. Song, H. S. Kim, Y. B. Kim, J. Rhee, N. Bansal, R. R. Salunkhe, H. Ahn, Chem. Eng. J. 2024, 498, 155312.
- 22I. Kim, K. Woo, Z. Zhong, E. Lee, D. Kang, S. Jeong, Y. M. Choi, Y. Jang, S. Kwon, J. Moon, ACS Appl. Mater. Interfaces 2017, 9, 6163.
- 23D. Wong, O. Abuzalat, S. Mostafa, S. S. Park, S. Kim, J. Mater. Chem. C 2020, 8, 7567.
- 24H. J. Hwang, S. J. Joo, H. S. Kim, ACS Appl. Mater. Interfaces 2015, 7, 25413.
- 25J. W. Lee, J. H. Kwak, J. Kim, S. Jeong, J. H. Park, S. Y. Jeong, S. H. Seo, J. T. Han, G. W. Lee, K. J. Baeg, I. H.-S. Yang, H. J. Jeong, Adv. Mater. Interfaces 2021, 8, 2100769.
- 26P. Stüble, C. Müller, J. Klemens, P. Scharfer, W. Schabel, M. Häringer, J. R. Binder, A. Hofmann, A. Smith, Batter. Supercaps 2024, 7, 202300375.
- 27S. Manna, S. Puravankara, Next Mater 2025, 7, 100353.
- 28Y. Jin, Z. Shi, T. Han, H. Yang, H. D. Asfaw, R. Gond, R. Younesi, P. G. Jönsson, W. Yang, Processes 2023, 11, 764.
- 29D. G. Lee, J. Y. Cho, J. H. Kim, G. Ryoo, J. Yoon, A. Jo, M. H. Lee, J. H. Park, J. K. Yoo, D. Y. Lee, J. H. Choi, J. T. Han, Adv. Funct. Mater. 2024, 34, 2311353.
- 30Y. Wang, Y. Chen, J. Xiong, X. Qiu, L. Dong, J. Jiang, X. Kong, Q. Zhuang, Z. Ju, Chem. Eng. J. 2024, 499, 156080.
- 31N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu, H. Liu, Z. Wang, P. Zhang, B. Xu, Adv. Energy Mater. 2019, 9, 1901351.
- 32J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739.
- 33Q. Li, X. Liu, Y. Tao, J. Huang, J. Zhang, C. Yang, Y. Zhang, S. Zhang, Y. Jia, Q. Lin, Y. Xiang, J. Cheng, W. Lv, F. Kang, Y. Yang, Q. H. Yang, Natl. Sci. Rev. 2022, 9, nwac084.
- 34L. K. Iglesias, E. N. Antonio, T. D. Martinez, L. Zhang, Z. Zhuo, S. J. Weigand, J. Guo, M. F. Toney, Adv. Energy Mater. 2023, 13, 2302171.
- 35Y. B. Rao, K. R. Achary, L. N. Patro, ACS Omega 2022, 7, 48192.
- 36Y. Liu, X. Wu, A. Moeez, Z. Peng, Y. Xia, D. Zhao, J. Liu, W. Li, Adv. Energy Mater. 2023, 13, 2203283.
- 37M. Sharma, R. S. Dhaka, Indian J. Pure Appl. Phy. 2024, 62, 93.
- 38S. Kadam, R. Kate, U. Chothe, P. Chalwadi, J. Shingare, M. Kulkarni, R. Kalubarme, B. Kale, ACS Appl. Mater. Interfaces 2023, 15, 34651.
- 39Y. Zhen, Y. Chen, F. Li, Z. Guo, Z. Hong, M. M. Titirici, Proc. Natl. Acad. Sci. USA 2021, 118, 2111119118.
- 40J. W. Lee, J. Y. Cho, M. J. Kim, J. H. Kim, J. H. Park, S. Y. Jeong, S. H. Seo, G. W. Lee, H. J. Jeong, J. T. Han, Sci. Rep. 2021, 11, 5140.
- 41R. Yin, Z. Guo, R. Liu, X. S. Tao, Chin. Chem. Lett. 2025, 36, 109643.
- 42Q. Zhang, X. Zhang, W. He, G. Xu, M. Ren, J. Liu, X. Yang, F. Wang, J. Mater. Sci. Technol. 2019, 35, 2396.