Gold Flake-Enabled Miniature Capacitive Picobalances
Jiajie Zhu
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYuanbiao Tong
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhenxin Wang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhiyong Li
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
Search for more papers by this authorCorresponding Author
Lei Zhang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Guo
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
Search for more papers by this authorLimin Tong
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Pan Wang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJiajie Zhu
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYuanbiao Tong
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhenxin Wang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZhiyong Li
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
Search for more papers by this authorCorresponding Author
Lei Zhang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXin Guo
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
Search for more papers by this authorLimin Tong
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Pan Wang
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing, 314000 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Measurement of masses of microscale objects or weak force with ultrahigh sensitivity (down to nanogram/piconewton level) and compact configuration is highly desired for fundamental research and applications in various disciplines. Here, by using freestanding gold flakes with high reflectivity (≈98% at 980 nm) as the sample tray and silica microfibers with extremely low spring constant (≈0.05 mN m−1) as the cantilever beams, miniature capacitive balances are reported with piconewton-level detection limit (picobalances) and reliable radiation force-based calibration. In the design, the gold flake is suspended by two silica microfibers, which also functions as an electrode to form a capacitor with an underneath gold electrode. Benefitting from the high reflectivity of the gold flake, the performance of picobalances can be precisely calibrated by exerting piconewton-level radiation pressure on the gold flake (working as a mirror) with a laser, showing a detection limit as low as 6.9 pN. Finally, using a fiber taper-assisted micromanipulation technique, masses of various types of pollens (with weights ranging from 4.6 to 96.3 ng) are readily measured by a picobalance at single-particle level. The miniature picobalances should find applications in precise measurement of masses of micro or nanoscale objects and various types of weak forces.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401640-sup-0001-SuppMat.docx26 MB | Supporting Information |
smtd202401640-sup-0002-MovieS1.mp4149 KB | Supplemental Movie 1 |
smtd202401640-sup-0003-MovieS2.mp42 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Martínez-Martín, G. Fläschner, B. Gaub, S. Martin, R. Newton, C. Beerli, J. Mercer, C. Gerber, D. J. Müller, Nature 2017, 550, 500.
- 2G. Longo, L. Alonso-Sarduy, L. M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, S. Kasas, Nat. Nanotechnol. 2013, 8, 522.
- 3H. Etayash, M. F. Khan, K. Kaur, T. Thundat, Nat. Commun. 2016, 7, 12947.
- 4M. Antognozzi, C. R. Bermingham, R. L. Harniman, S. Simpson, J. Senior, R. Hayward, H. Hoerber, M. R. Dennis, A. Y. Bekshaev, K. Y. Bliokh, F. Nori, Nat. Phys. 2016, 12, 731.
- 5J. N. Munday, F. Capasso, V. A. Parsegian, Nature 2009, 457, 170.
- 6A. Stange, M. Imboden, J. Javor, L. K. Barrett, D. J. Bishop, Microsyst. Nanoeng. 2019, 5, 14.
- 7F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids, R. S. Decca, V. A. Aksyuk, D. A. R. Dalvit, D. Lopez, Nat. Commun. 2013, 4, 2515.
- 8T. Westphal, H. Hepach, J. Pfaff, M. Aspelmeyer, Nature 2021, 591, 225.
- 9E. Gavartin, P. Verlot, T. J. Kippenberg, Nat. Nanotechnol. 2012, 7, 509.
- 10E. Sage, A. Brenac, T. Alava, R. Morel, C. Dupré, M. S. Hanay, M. L. Roukes, L. Duraffourg, C. Masselon, S. Hentz, Nat. Commun. 2015, 6, 6482.
- 11M. Li, H. X. Tang, M. L. Roukes, Nat. Nanotechnol. 2007, 2, 114.
- 12F. Pan, K. Cui, Y. Huang, Z. Chen, N. Wu, G. Bai, Z. Huang, X. Feng, F. Liu, W. Zhang, Chip 2023, 2, 100050.
- 13O. Malvar, J. J. Ruz, P. M. Kosaka, C. M. Dominguez, E. Gil-Santos, M. Calleja, J. Tamayo, Nat. Commun. 2016, 7, 13452.
- 14J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, Nat. Nanotechnol. 2012, 7, 301.
- 15K. Jensen, K. Kim, A. Zettl, Nat. Nanotechnol. 2008, 3, 533.
- 16Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, Nano Lett. 2006, 6, 583.
- 17D. Z. Keifer, M. F. Jarrold, Mass Spectrom. Rev. 2017, 36, 715.
- 18A. I. Nesvizhskii, O. Vitek, R. Aebersold, Nat. Methods 2007, 4, 787.
- 19S. Sauer, M. Kliem, Nat. Rev. Microbiol. 2010, 8, 74.
- 20A. Bauermeister, H. Mannochio, L. V. Costa-lotufo, A. K. Jarmusch, P. C. Dorrestein, Nat. Rev. Microbiol. 2022, 20, 143.
- 21E. Sage, M. Sansa, S. Fostner, M. Defoort, M. Gély, A. K. Naik, R. Morel, L. Duraffourg, M. L. Roukes, T. Alava, G. Jourdan, E. Colinet, C. Masselon, A. Brenac, S. Hentz, Nat. Commun. 2018, 9, 3283.
- 22M. S. Hanay, S. Kelber, A. K. Naik, D. Chi, S. Hentz, E. C. Bullard, E. Colinet, L. Duraffourg, M. L. Roukes, Nat. Nanotechnol. 2012, 7, 602.
- 23S. Herzog, G. Fläschner, I. Incaviglia, J. C. Arias, A. Ponti, N. Strohmeyer, M. M. Nava, D. J. Müller, Nat. Commun. 2024, 15, 1751.
- 24C. C. Chien, J. Jiang, B. Gong, T. Li, A. Gaitas, Meas. Sci. Technol. 2022, 33, 095009.
- 25T. T. Perkins, Laser Photon. Rev. 2009, 3, 203.
- 26K. C. Neuman, A. Nagy, Nat. Methods 2008, 5, 491.
- 27X. Shang, N. Wang, S. Cao, H. Chen, D. Fan, N. Zhou, M. Qiu, Adv. Mater. 2014, 36, 2305121.
- 28M. Zou, C. Liao, S. Liu, C. Xiong, C. Zhao, J. Zhao, Z. Gan, Y. Chen, K. Yang, D. Liu, Y. Wang, Y. Wang, Light: Sci. Appl. 2021, 10, 171.
- 29L. Chen, B. Liu, C. Markwell, J. Liu, X. He, Z. Ghassemlooy, H. Torun, Y. Fu, J. Yuan, Q. Liu, G. Farrell, Q. Wu, Sci. Adv. 2024, 10, eadk8357.
- 30Q. Wu, Y. Qu, J. Liu, J. Yuan, S. Wan, T. Wu, IEEE Sens. J. 2021, 21, 11.
- 31Y. Wu, S. Xiao, Y. Xu, Y. Shen, Y. Jiang, W. Jin, Y. Yang, S. Jian, Opt. Laser Technol. 2018, 103, 17.
- 32M. Šiškins, M. Lee, D. Wehenkel, R. Van Rijn, T. W. De Jong, J. R. Renshof, B. C. Hopman, W. S. J. M. Peters, D. Davidovikj, H. S. J. Van Der Zant, P. G. Steeneken, Microsyst. Nanoeng. 2020, 6, 102.
- 33A. Nastro, M. Ferrari, V. Ferrari, Sens. Actuators, A 2020, 312, 112127.
- 34M. Bulut, Coskun, S. M., S. R. Moheimani, A. Neild, T. Alan, Appl. Phys. Lett. 2014, 104, 153502.
10.1063/1.4871380 Google Scholar
- 35J. L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 1993, 64, 1868.
- 36J. E. Sader, R. Borgani, C. T. Gibson, D. B. Haviland, M. J. Higgins, J. I. Kilpatrick, J. Lu, P. Mulvaney, C. J. Shearer, A. D. Slattery, P. Thorén, J. Tran, H. Zhang, H. Zhang, T. Zheng, Rev. Sci. Instrum. 2016, 87, 093711.
- 37J. E. Sade, J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. Marusic, P. Mulvaney, E. J. Bieske, Rev. Sci. Instrum. 2012, 83, 103705.
- 38S. Dohn, S. Schmid, F. Amiot, A. Boisen, Appl. Phys. Lett. 2010, 97, 044103.
- 39L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature 2003, 426, 816.
- 40J. Zhang, Y. Kang, X. Guo, Y. Li, K. Liu, Y. Xie, H. Wu, D. Cai, J. Gong, Z. Shi, Y. Jin, P. Wang, W. Fang, L. Zhang, L. Tong, Light Sci. Appl. 2023, 12, 89.
- 41Y. Xu, J. Gong, Y. Xu, N. Yao, W. Fang, X. Guo, Opt. Express 2017, 25, 10434.
- 42Y. Kang, W. Fang, L. Tong, IEEE Photon. Technol. Lett. 2020, 32, 219.
- 43L. Liu, A. V. Krasavin, J. Zheng, Y. Tong, P. Wang, X. Wu, B. Hecht, C. Pan, J. Li, L. Li, X. Guo, A. V. Zayats, L. Tong, Nano Lett. 2022, 22, 1786.
- 44C. Pan, Y. Tong, H. Qian, A. V. Krasavin, J. Li, J. Zhu, Y. Zhang, B. Cui, Z. Li, C. Wu, L. Liu, L. Li, X. Guo, A. V. Zayats, L. Tong, P. Wang, Nat. Commun. 2024, 15, 2840.
- 45E. C. C. M. Silva, L. Tong, S. Yip, K. J. V. Vliet, Small 2006, 2, 239.
- 46W. Ding, Z. Guo, R. S. Ruoff, J. Appl. Phys. 2007, 101, 034316.
- 47K. V. Namjoshi, P. P. Biringer, IEEE Trans. Magn. 1988, 24, 2181.
- 48P. Wang, Y. Wang, L. Tong, Light: Sci. Appl. 2013, 2, e102.
- 49J. Lu, Q. Li, C. Qiu, Y. Hong, P. Ghosh, M. Qiu, Sci. Adv. 2019, 5, eaau8217.
- 50A. R. Stokes, Nature 1947, 160, 532.
- 51W. Zhang, H. Yan, Z. Peng, G. Meng, Sens. Actuators A Phys. 2014, 214, 187.
- 52D. Davidovikj, P. H. Scheepers, H. S. J. van der Zant, P. G. Steeneken, ACS Appl. Mater. Interfaces 2017, 9, 43205.
- 53S. B. Patil, R. M. AI-Jehani, H. Etayash, V. Turbe, K. Jiang, J. Bailey, W. AI-Akkad, R. Soudy, K. Kaur, R. A. Mckendry, T. Thundat, J. W. Ndieyira, Commun. Bio. 2018, 1, 175.
- 54J. W. Ndieyira, M. Watari, A. D. Barrera, D. Zhou, M. Vögtli, M. Batchelor, M. A. Cooper, T. Strunz, M. A. Horton, C. Abell, T. Rayment, G. Aeppli, R. A. McKendry, Nat. Nanotechnol. 2008, 3, 691.
- 55F. Huber, H. P. Lang, N. Backmann, D. Rimoldi, C. Gerber, Nat. Nanotechnol. 2013, 8, 125.
- 56G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, A. Majumdar, Nat. Biotechnol. 2001, 19, 856.