In Silico Detection and Conveyance Feasibility of Antifungal Prodrug Flucytosine on the Surface of Pristine and Germanium-Doped SiC Nanosheet
Anjaly Baiju Krishna
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
Search for more papers by this authorArjun Suvilal
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
Search for more papers by this authorCorresponding Author
Rakhesh Vamadevan
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
E-mail: [email protected]
Search for more papers by this authorJeetu Satheesh Babu
School of Material Science and Engineering, National Institute of Technology Calicut, NIT Campus, Kozhikode, Kerala, 673601 India
Search for more papers by this authorAnjaly Baiju Krishna
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
Search for more papers by this authorArjun Suvilal
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
Search for more papers by this authorCorresponding Author
Rakhesh Vamadevan
Department of Physics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham Amritapuri, Karunagappalli, Kerala, 690525 India
E-mail: [email protected]
Search for more papers by this authorJeetu Satheesh Babu
School of Material Science and Engineering, National Institute of Technology Calicut, NIT Campus, Kozhikode, Kerala, 673601 India
Search for more papers by this authorAbstract
The work describes a novel sensing and transportation feasibility of the well-established antifungal drug Flucytosine (5-FC) using a 2D Silicon carbide (SiC) and Germanium-doped Silicon carbide (Ge@SiC) nanosheet via PBE level of Density functional theory. The computational study revealed that the drug molecules adhere to SiC and Ge@SiC sheets, maintaining their structural properties through physisorption on SiC and chemisorption on Ge@SiC. The charge transfer process associated with the adsorption is observed by Lowdin charge analysis and both the SiC and Ge@SiC sheets are identified as a feasible oxidation-based nanosensor for the drug. The results of electronic property calculation revealed a reduction in bandgap by 48.2% and 44.8% on SiC and Ge@SiC sheets respectively on adsorption of the drug, highlighting SiC nanosheet to be used as a bandgap-based sensing device. Sensing response at room temperature and human body temperature suggested that, the SiC sheet has an excellent selectivity to Flucytosine drug. The drug's desorption efficiency from the carrier is analyzed using recovery time analysis at different temperatures and frequencies, suggesting the SiC nanosheet to be a better candidate. Together, the study highlights the potential sensing ability of SiC nanosheet for Flucytosine in contrast to the existing 0-D nanostructures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401575-sup-0001-SuppMat.docx486.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. S. M. Sigera, D. W. Denning, Ther. Adv. Infect. Dis. 2023, 10, 20499361231161387.
- 2A. Vermes, H.-J. Guchelaar, J. Dankert, J. Antimicrob. Chemother. 2000, 46, 171.
- 3A. C. Pasqualotto, S. J. Howard, C. B. Moore, D. W. Denning, J. Antimicrob. Chemother. 2007, 59, 791.
- 4J. P. Vialaneix, M. C. Malet-Martino, J. S. Hoffmann, J. Pris, R. Martino, Drug Metab. Dispos. 1987, 15, 718.
- 5A. G. Berger, S. M. Restaino, I. M. White, Anal. Chim. Acta 2017, 949, 59.
- 6U. Schwertschlag, L. M. Nakata, J. Gal, Improved Procedure for Determination of Flucytosine in Human Blood Plasma by High-Pressure Liquid Chromatography, 1984.
- 7X. Liu, L. Bai, X. Cao, F. Wu, T. Yin, W. Lu, Anal. Chim. Acta 2022, 1234, 340522.
- 8J. Li, J. Liu, G. Tan, J. Jiang, S. Peng, M. Deng, D. Qian, Y. Feng, Y. Liu, Biosens. Bioelectron. 2014, 54, 468.
- 9W. Lu, S. Xue, X. Liu, C. Bao, H. Shi, Microchem. J. 2024, 196, 109606.
- 10A. Hassanpour, S. Ebrahimiasl, L. Youseftabar-Miri, A. Ebadi, S. Ahmadi, M. Eslami, Comput. Theor. Chem. 2021, 1198, 113166.
- 11G. Gecim, M. Ozekmekci, M. F. Fellah, Comput. Theor. Chem. 2020, 1180, 112828.
- 12B. Qiao, P. Zhao, Z. Wang, J. Xiong, Y. Hu, S. Yang, H. Xu, H. Gu, Comput. Theor. Chem. 2020, 1180, 112829.
- 13H. F. Salem, S. M. Ahmed, M. M. Omar, Drug Des. Dev. Ther. 2016, 10, 277.
- 14A. Y. Safhi, N. R. Naveen, K. J. Rolla, P. D. Bhavani, M. Kurakula, K. M. Hosny, W. A. Abualsunun, M. Alissa, A. Alsalhi, A. A. Alahmadi, K. Zoghebi, A. S. Halwaani, R. Ibrahim K, Front. Pharmacol. 2023, 14, 1321517.
- 15X. Yao, J. Mu, Y. Zheng, J. Wu, W. Zhu, K. Wang, Colloids Surf., A 2023, 678, 132481.
- 16C. C. Bueno, P. S. Garcia, C. Steffens, D. K. Deda, F. de Lima Leite, in Nanoscience and Its Applications, (Eds.: A. L. Da Róz, M. Ferreira, F. Lima Leite, O. N. Oliveira), William Andrew Publishing, Norwich, USA 2017, pp. 121–153.
10.1016/B978-0-323-49780-0.00005-3 Google Scholar
- 17Z. Dai, N. Lu, K. M. Liechti, R. Huang, Curr. Opin. Solid State Mater. Sci 2020, 24, 100837.
- 18Z. Dai, G. Wang, L. Liu, Y. Hou, Y. Wei, Z. Zhang, Compos. Sci. Technol. 2016, 136, 1.
- 19M. Adel, M. M. Kadhim, H. H. Muttashar, S. K. Hachim, S. A. Abdullaha, A. M. Rheima, Korean J. Chem. Eng. 2023, 40, 1433.
- 20L. Sun, B. Wang, Y. Wang, Adv. Mater. Interfaces 2018, 5, 1701300.
- 21L. Sun, C. Han, N. Wu, B. Wang, Y. Wang, RSC Adv. 2018, 8, 13697.
- 22S. Chabi, Z. Guler, A. J. Brearley, A. D. Benavidez, T. S. Luk, Nanomaterials 2021, 11, 1799.
- 23S. E. Saddow, in Silicon Carbide Technology for Advanced Human Healthcare Applications (Ed: S. E. Saddow), Elsevier, Amsterdam 2022, pp. 1–48.
10.1016/B978-0-323-90609-8.00006-5 Google Scholar
- 24K. Puttananjegowda, A. Takshi, S. Thomas, in Silicon Carbide Technology for Advanced Human Healthcare Applications (Ed: S. E. Saddow), Elsevier, Amsterdam 2022, pp. 217–241.
10.1016/B978-0-323-90609-8.00010-7 Google Scholar
- 25Q. Wei, Y. Yang, G. Yang, X. Peng, J. Alloys Compd. 2021, 868, 159201.
- 26S. E. Saddow, Micromachines (Basel) 2022, 13, 346.
- 27C. W. Hamm, P. G. Hugenholtz, Catheterization and Cardiovasc. Interventions 2003, 60, 375.
- 28M. Beygi, W. Dominguez-Viqueira, G. Mumcu, C. L. Frewin, F. La Via, S. E. Saddow, in Silicon Carbide Technology for Advanced Human Healthcare Applications (Ed: S. E. Saddow,), Elsevier, Amsterdam 2022, pp. 161–195.
10.1016/B978-0-323-90609-8.00003-X Google Scholar
- 29Z. V. Parlak, N. Labude-Weber, K. Neuhaus, C. Schmidt, A. D. Morgan, R. Zybała, J. Gonzalez-Julian, S. Neuss, K. Schickle, J. Biomed. Mater. Res. A 2023, 111, 1322.
- 30S. Iannotta, A. Romeo, P. D. ’ Angelo, G. Tarabella, Silicon Carbide Biotechnology, 2nd ed., Elsevier, Amsterdam 2016.
10.1016/B978-0-12-802993-0.00005-8 Google Scholar
- 31N. Yang, H. Zhuang, R. Hoffmann, W. Smirnov, J. Hees, X. Jiang, C. E. Nebel, Anal. Chem. 2011, 83, 5827.
- 32C. Li, Q. Xu, J. Zhu, T. Luo, M. Yang, H. Dai, M. L. Kosinova, S. Zhang, R. Tu, Surf. Interfaces 2024, 51, 104704.
- 33K. Puttananjegowda, A. Takshi, S. Thomas, Biosens. Bioelectron. 2021, 186, 113285.
- 34L. Yang, H. Zhao, S. Fan, S. Deng, Q. Lv, J. Lin, C. P. Li, Biosens. Bioelectron. 2014, 57, 199.
- 35Y. Yang, A. Sun, M. Eslami, Phys. E Low Dimens. Syst. Nanostruct. 2021, 125, 114411.
- 36N. Baildya, S. Mazumdar, N. K. Mridha, A. P. Chattopadhyay, A. A. Khan, T. Dutta, M. Mandal, S. K. Chowdhury, R. Reza, N. N. Ghosh, Comput. Biol. Med. 2023, 154, 106593.
- 37G. A. Okon, F. O. Ogungbemiro, H. Louis, I. Benjamin, E. C. Agwamba, A. S. Adeyinka, Comput. Theor. Chem. 2023, 1227, 114250.
- 38U. Adharsh, R. Akash, A. S. Balaji, D. J. Thiruvadigal, R. M. Hariharan, J. Sneha, V. Abinaya, K. J. Sivasankar, ECS J. Solid State Sci. Technol. 2023, 12, 111001.
- 39A. J. Bin Iqbal, R. Shahriar, A. Zubair, Nanoscale Adv. 2024, 6, 2968.
- 40M. D. Ganji, H. Ko, S. Jamehbozorgi, M. Tajbakhsh, S. Tanreh, R. Pahlavan Nejad, M. Sepahvand, M. Rezvani, Phys. Chem. Chem. Phys. 2024, 26, 14018.
- 41N. Wang, X. Cheng, N. Li, H. Wang, H. Chen, Adv. Healthcare Mater. 2019, 8, 1801002.
- 42V. P. Torchilin, Adv. Drug Delivery Rev. 2006, 58, 1532.
- 43M. D. Mohammadi, H. Y. Abdullah, Struct. Chem. 2021, 32, 481.
- 44E. Nemati-Kande, M. Abbasi, M. D. Mohammadi, ChemistrySelect 2019, 4, 2453.
- 45M. Doust Mohammadi, H. Y. Abdullah, S. Bhowmick, G. Biskos, Silicon 2023, 15, 177.
- 46N. M. Umran, H. A. Rashed, AIP Conf. Proc. 2019, 2144, 030016.
10.1063/1.5123086 Google Scholar
- 47S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, Nucleic Acids Res. 2023, 51, D1373.
- 48H. Rahman, Md. R. Hossain, T. Ferdous, J. Mol. Liq. 2020, 320, 114427.
- 49K. S. Javanmardi, Z. K. Horastani, Eur. Phys. J. Plus 2024, 139, 567.
- 50A. Skinner, The Concept of Electronegativity 1934.
- 51W. Liu, A. Tkatchenko, M. Scheffler, Acc. Chem. Res. 2014, 47, 3369.
- 52A. B. Krishna, A. Suvilal, R. Vamadevan, J. S. Babu, J. Mol. Liq. 2024, 413, 125968.
- 53A. Kokalj, Chem. Phys. 2012, 393, 1.
- 54E. Ruiz, D. R. Salahub, A. Vela, J. Phys. Chem. 1996, 100, 12265.
- 55A. S. Rad, S. S. Shabestari, S. Mohseni, S. A. Aghouzi, J. Solid State Chem. 2016, 237, 204.
- 56P.-O. Löwdin, in Advances in Quantum Chemistry (Ed: P.-O. Löwdin), Academic Press, Amsterdam 1970, pp. 185–199.
10.1016/S0065-3276(08)60339-1 Google Scholar
- 57T. Kar, A. B. Sannigrahi, J. Mol. Struct.: THEOCHEM 1988, 165, 47.
10.1016/0166-1280(88)87005-2 Google Scholar
- 58C. Ertural, S. Steinberg, R. Dronskowski, RSC Adv. 2019, 9, 29821.
- 59A. Kahn, Mater. Horiz. 2016, 3, 7.
- 60A. Novikov, Solid State Electron. 2010, 54, 8.
- 61Y. Lei, X. Zhang, T. Deng, J. Mol. Model. 2021, 27, 202.
- 62R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512.
- 63V. M. Bassey, E. E. D. Okon, H. Louis, I. Benjamin, K. Chukwuemeka, T. E. Gber, M. C. Ezekiel, S. W. Qader, A. S. Adeyinka, Chem. Phys. Impact 2023, 7, 100297.
- 64M. Zarghami Dehaghani, F. Yousefi, S. M. Sajadi, M. Tajammal Munir, O. Abida, S. Habibzadeh, A. H. Mashhadzadeh, N. Rabiee, E. Mostafavi, M. R. Saeb, Molecules 2021, 26, 4920.
- 65S. Ghahremani, M. Samadizadeh, M. Khaleghian, N. Z. Shiraz, Phosphorus, Sulfur Silicon Relat. Elem. 2020, 195, 293.
- 66M. Hosseinzadeh, S. Masoudi, N. Masnabadi, F. Azarakhshi, Mater. Res. Express 2022, 9, 045002.
- 67O. C. Adekoya, G. J. Adekoya, E. R. Sadiku, Y. Hamam, S. S. Ray, Pharmaceutics 2022, 14, 1972.
- 68J. Rafique, Q. Q. Afzal, M. Perveen, J. Iqbal, M. S. Akhter, S. Nazir, M. S. Al-Buriahi, S. Alomairy, Z. A. Alrowaili, J. Taibah Univ. Sci. 2022, 16, 31.
- 69M. H. Miah, M. R. Hossain, M. S. Islam, T. Ferdous, F. Ahmed, RSC Adv. 2021, 11, 38457.
- 70W. K. Alaarage, A. H. Abo Nasria, H. A. Abdulhussein, Eur. Phys. J. B 2023, 96, 134.
- 71S. Ghosh, P. Nath, S. Moshat, D. Sanyal, Phys. Scr. 2024, 99, 045913.
- 72Z. Tian, C. Song, H. Wu, Molecules 2023, 28, 1214.
- 73U. Orozco-Valencia, J. L. Gázquez, A. Vela, J. Mol. Model. 2017, 23, 207.
- 74C. B. Ubah, M. U. Akem, I. Benjamin, H. O. Edet, A. S. Adeyinka, H. Louis, Mol. Syst. Des. Eng. 2024, 9, 832.
- 75E. A. M. Gad, E. M. S. Azzam, S. A. Halim, Egypt. J. Pet. 2018, 27, 695.
10.1016/j.ejpe.2017.10.005 Google Scholar
- 76T. Mallamma, P. B. Mirje, S. Patil, J. S. Lokapur, A. J. Lokapur, Int. J. Pharm. Investig. 2024, 14, 531.
- 77P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, et al., J. Phys.: Condens. Matter 2009, 21, 395502.
- 78P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys.: Condens. Matter 2017, 29, 465901.
- 79J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 80D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
- 81S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 82 National Center for Biotechnology Information, PubChem Compound Summary for CID 3366, Flucytosine, https://pubchem.ncbi.nlm.nih.gov/compound/Flucytosine (accessed: June 2024).
- 83A. Kokalj, J. Mol. Graph Model 1999, 17, 176.
- 84K. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653.
- 85Z. Rahmani, L. Edjlali, E. Vessally, A. Hosseinian, P. D. K. Nezhad, J. Sulfur Chem. 2020, 41, 82.
- 86Z. Zhao, Y. Yong, Q. Zhou, Y. Kuang, X. Li, ACS Omega 2020, 5, 12364.