Tailoring the Interfacial Composition of Heterostructure InP Quantum Dots for Efficient Electroluminescent Devices
Seungki Shin
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorYunseo Lee
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJeon Kim
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJina Na
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorNamyoung Gwak
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorSeongchan Kim
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJaeyoung Seo
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Chong Seung Yoon
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nuri Oh
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorSeungki Shin
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorYunseo Lee
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJeon Kim
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJina Na
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorNamyoung Gwak
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorSeongchan Kim
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorJaeyoung Seo
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
Search for more papers by this authorCorresponding Author
Chong Seung Yoon
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nuri Oh
Division of Materials Science and Engineerin, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The formation of core–shell quantum dots (QDs) with type-I band alignment results in surface passivation, ensuring the efficient confinement of excitons for light-emitting applications. In such cases, the atomic composition at the core–shell heterojunction significantly affects the optical, and electrical properties of the QDs. However, for InP cores, shell materials are limited to compositions consisting of II–VI group elements. The restricted selection of shell materials leads to an interfacial misfit, resulting in a charge imbalance at the core–shell heterojunction. In this study, the effect of interfacial stoichiometry is investigated on the optical, and electrical properties of InP core–shell QDs. Direct Se injection strategy is employed during the synthesis of the InP core to regulate the interfacial chemical composition, resulting in the formation of an InZnSe alloy on the core surface. This InZnSe layer reduces the misfit between the InP core, and ZnSe shell, leading to a remarkable photoluminescence quantum yield of 95% with a narrow emission bandwidth of 34 nm. The InZnSe interlayer significantly influences the electroluminescence (EL) processes, increasing the charge injection efficiency, and mitigating charge imbalance. A green-emitting EL device is demonstrated with a maximum luminance of 26370 cd m−2, and a peak current efficiency of 31.5 cd A−1.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401560-sup-0001-SuppMat.docx1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2010, 110, 389.
- 2M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, E. H. Sargent, Nat. Electron. 2021, 4, 548.
- 3F. P. García de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, E. H. Sargent, Science 2021, 373, 640.
- 4N. Gwak, S. Shin, H. Yoo, G. W. Seo, S. Kim, H. Jang, M. Lee, T. H. Park, B. J. Kim, J. Lim, S. Y. Kim, S. Kim, G. W. Hwang, N. Oh, Adv. Mater. 2024, 36, 2404480.
- 5S. Shin, K. Kang, H. Jang, N. Gwak, S. Kim, T. A. Kim, N. Oh, Small Methods 2023, 7, 2300206.
- 6A. I. Ekimov, A. L. Efros, A. A. Onushchenko, Solid State Commun. 1985, 56, 921.
- 7C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 1993, 115, 8706.
- 8A. P. Alivisatos, Science 1996, 181, 933.
10.1126/science.271.5251.933 Google Scholar
- 9R. Xie, D. Battaglia, X. Peng, J. Am. Chem. Soc. 2007, 129, 15432.
- 10H. J. Lee, S. Im, D. Jung, K. Kim, J. A. Chae, J. Lim, J. W. Park, D. Shin, K. Char, B. G. Jeong, J. S. Park, E. Hwang, D. C. Lee, Y. S. Park, H. J. Song, J. H. Chang, W. K. Bae, Nat. Commun. 2023, 14, 3779.
- 11Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović, Nat. Photonics 2013, 7, 13.
- 12T. Lee, D. Hahm, K. Kim, W. K. Bae, C. Lee, J. Kwak, Small 2019, 15, 1905162.
- 13K. T. Yong, H. Ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra, P. N. Prasad, ACS Nano 2009, 3, 502.
- 14J. Gao, K. Chen, R. Xie, J. Xie, S. Lee, Z. Cheng, X. Peng, X. Chen, Small 2010, 6, 256.
- 15G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 2006, 442, 180.
- 16S. Kim, K. Lee, N. Gwak, S. Shin, J. Seo, S. H. Noh, D. Kim, Y. Lee, H. Kong, D. Yeo, T. A. Kim, S. Y. Lee, J. Jang, N. Oh, Adv. Mater. 2024, 36, 2310671.
- 17S. Kim, S. Yeon, M. Lee, J. Jin, S. Shin, N. Gwak, I. Jeong, H. Jang, G. W. Hwang, N. Oh, NPG Asia Mater 2023, 15, 30
- 18A. H. Proppe, D. B. Berkinsky, H. Zhu, T. Šverko, A. E. K. Kaplan, J. R. Horowitz, T. Kim, H. Chung, S. Jun, M. G. Bawendi, Nat. Nanotechnol. 2023, 18, 993.
- 19U. Merkt, J. Huser, M. Wagner, Phys. Rev. B 1991, 43, 7320.
- 20M. A. El-Sayed, Acc. Chem. Res. 2004, 37, 326.
- 21M. M. Green, Curr. Opin. Solid State Mater. Sci. 2002, 6, 355.
- 22J. J. Calvin, A. S. Brewer, A. P. Alivisatos, Nat. Synth. 2022, 1, 127.
- 23S. Shin, N. Gwak, H. Yoo, H. Jang, M. Lee, S. Kim, S. Yeon, T. A. Kim, S. Kim, G. W. Hwang, N. Oh, Chem. Eng. J. 2023, 466, 143223.
- 24K. E. Hughes, J. L. Stein, M. R. Friedfeld, B. M. Cossairt, D. R. Gamelin, ACS Nano 2019, 13, 14198.
- 25B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463.
- 26E. Jang, Y. Kim, Y. H. Won, H. Jang, S. M. Choi, ACS Energy Lett. 2020, 5, 1316.
- 27Y. Choi, D. Hahm, W. K. Bae, J. Lim, Nat. Commun. 2023, 14, 43.
- 28G. E. Cragg, A. L. Efros, Nano Lett. 2010, 10, 313.
- 29J. Lim, Y.-S. Park, K. Wu, H. J. Yun, V. I. Klimov, Nano Lett. 2018, 18, 6645.
- 30A. Gupta, J. C. Ondry, K. Lin, Y. Chen, M. H. Hudson, M. Chen, R. D. Schaller, A. J. Rossini, E. Rabani, D. V. Talapin, J. Am. Chem. Soc. 2023, 145, 16429.
- 31G. Almeida, R. F. Ubbink, M. Stam, I. du Fossé, A. J. Houtepen, Nat. Rev. Mater. 2023, 8, 742.
- 32A. Colli, E. Pelucchi, A. Franciosi, Appl. Phys. Lett. 2003, 83, 81.
- 33B. G. Jeong, J. H. Chang, D. Hahm, S. Rhee, M. Park, S. Lee, Y. Kim, D. Shin, J. W. Park, C. Lee, D. C. Lee, K. Park, E. Hwang, W. K. Bae, Nat. Mater. 2022, 21, 246.
- 34N. Kirkwood, A. De Backer, T. Altantzis, N. Winckelmans, A. Longo, F. V. Antolinez, F. T. Rabouw, L. De Trizio, J. J. Geuchies, J. T. Mulder, N. Renaud, S. Bals, L. Manna, A. J. Houtepen, Chem. Mater. 2020, 32, 557.
- 35D. A. Taylor, J. A. Teku, S. Cho, W. S. Chae, S. J. Jeong, J. S. Lee, Chem. Mater. 2021, 33, 4399.
- 36D. Hahm, J. H. Chang, B. G. Jeong, P. Park, J. Kim, S. Lee, J. Choi, W. D. Kim, S. Rhee, J. Lim, D. C. Lee, C. Lee, K. Char, W. K. Bae, Chem. Mater. 2019, 31, 3476.
- 37E. M. Janke, N. E. Williams, C. She, D. Zherebetskyy, M. H. Hudson, L. Wang, D. J. Gosztola, R. D. Schaller, B. Lee, C. Sun, G. S. Engel, D. V. Talapin, J. Am. Chem. Soc. 2018, 140, 15791.
- 38Z. Cui, S. Qin, H. He, Z. Wen, D. Yang, Z. Piao, S. Mei, W. Zhang, R. Guo, ACS Appl. Nano Mater. 2024, 7, 1181.
- 39Z. Cui, S. Mei, Z. Wen, D. Yang, S. Qin, Z. Xiong, B. Yang, H. He, R. Bao, Y. Qiu, Y. Chen, W. Zhang, F. Xie, G. Xing, R. Guo, Small 2022, 18, 2108120.
- 40K. Huang, R. Demadrille, M. G. Silly, F. Sirotti, P. Reiss, O. Renault, ACS Nano 2010, 4, 4799.
- 41Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, X. Peng, J. Am. Chem. Soc. 2019, 141, 6448.
- 42Z. Sun, Q. Wu, S. Wang, F. Cao, Y. Wang, L. Li, H. Wang, L. Kong, L. Yan, X. Yang, ACS Appl. Mater. Interfaces 2022, 14, 15401.
- 43J. L. Stein, E. A. Mader, B. M. Cossairt, J. Phys. Chem. Lett. 2016, 7, 1315.
- 44F. Pietra, N. Kirkwood, L. De Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, A. J. Houtepen, Chem. Mater. 2017, 29, 5192.
- 45A. T. Nguyen, I. J. La Plante, C. Ippen, R. Ma, D. F. Kelley, J. Phys. Chem. C 2021, 125, 4110.
- 46H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, R. S. Liu, Small 2017, 13, 1.
- 47J. H. Jo, D. Y. Jo, S. H. Lee, S. Y. Yoon, H. B. Lim, B. J. Lee, Y. R. Do, H. Yang, ACS Appl. Nano Mater. 2020, 3, 1972.
- 48Y. Lee, D. Y. Jo, T. Kim, J. H. Jo, J. Park, H. Yang, D. Kim, ACS Appl. Mater. Interfaces 2022, 14, 12479.
- 49S. Chen, W. Cao, T. Liu, S.-W. Tsang, Y. Yang, X. Yan, L. Qian, Nat. Commun. 2019, 10, 765.
- 50K. Kim, D. Hahm, G. W. Baek, T. Lee, D. Shin, J. Lim, W. K. Bae, J. Kwak, ACS Appl. Electron. Mater. 2022, 4, 6229.
- 51S. K. Kim, H. Yang, Y. S. Kim, J. Appl. Phys. 2019, 126, 185702.
- 52H. Luo, W. Zhang, M. Li, Y. Yang, M. Guo, S. W. Tsang, S. Chen, ACS Nano 2019, 13, 8229.
- 53P. Tang, L. Xie, X. Xiong, C. Wei, W. Zhao, M. Chen, J. Zhuang, W. Su, Z. Cui, ACS Appl. Mater. Interfaces 2020, 12, 13087.
- 54C. You, A. Titov, B. H. Kim, M. E. Orazem, J. Solid State Electrochem. 2020, 24, 3083.
- 55X. Zhang, D. Li, Z. Zhang, H. Liu, S. Wang, Adv. Sci. 2022, 9, 1.