Heterogeneity During the Formation of Waterborne Barrier Coating Revealed by Cryogenic Transmission Electron Microscopy
Haiqin Du
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorYifan Xu
Dow Chemical Pacific (Singapore) Private Limited, Singapore, 138628 Singapore
Search for more papers by this authorQiangqiang Yan
The Dow Chemical Company, Shanghai, 201203 China
Search for more papers by this authorZhongqi Liu
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorPilan Zhang
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorShiwen Cui
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorGuangrong Zhou
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorZhihong Nie
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorCorresponding Author
Yifei Xu
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
E-mail: [email protected]
Search for more papers by this authorHaiqin Du
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorYifan Xu
Dow Chemical Pacific (Singapore) Private Limited, Singapore, 138628 Singapore
Search for more papers by this authorQiangqiang Yan
The Dow Chemical Company, Shanghai, 201203 China
Search for more papers by this authorZhongqi Liu
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorPilan Zhang
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorShiwen Cui
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorGuangrong Zhou
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorZhihong Nie
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
Search for more papers by this authorCorresponding Author
Yifei Xu
State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science of Fudan University, Shanghai, 201203 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Imaging the film formation process of waterborne barrier coatings in situ with nanoscopic resolution is very challenging, which limits the understanding of the underlying mechanisms and rational design of the materials. Here this challenge is tackled using in situ cryogenic transmission electron microscopy (cryoTEM) in combination with electron tomography (cryoET), which allows 3D imaging of the process with <1 nm resolution. By monitoring the film formation process of poly(ethylene-co-methacrylic acid) (EMAA) ionomer dispersion, onion-like nano-aggregates are captured. These aggregates can be removed by weakening the interactions between EMAA particles via adding amino alcohol coalescing agents or increasing the EMAA neutralization degree, which improves the barrier property of the coating simultaneously, indicating the importance of these heterogeneities to the material performance. The study benefits a better understanding of the formation kinetics of waterborne coatings, and demonstrates cryoTEM as an efficient method for studying the film formation process in situ.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401527-sup-0001-SuppMat.docx1.6 MB | Supporting Information |
smtd202401527-sup-0002-MovieS1.mp436 MB | Supplemental Movie 1 |
smtd202401527-sup-0003-MovieS2.mp418.8 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Javadi, A. Cobaj, M. D. Soucek, Handbook of Waterborne Coatings, Elsevier, Amsterdam The Netherlands 2020.
10.1016/B978-0-12-814201-1.00012-3 Google Scholar
- 2S. Harrod, The Future of Functional & Barrier Coatings for Paper & Board to 2028, https://www.smithers.com/services/market-reports/paper/functional-barrier-coatings-for-paper-board-2028. (accessed: May 2024)
- 3A. Overbeek, J. Coat. Technol. Res. 2010, 7, 1.
- 4T. N. Raja, A. M. Brouwer, T. Nabuurs, R. Tennebroek, Colloid. Polym. Sci. 2012, 290, 541.
- 5J. Rottstegge, B. Traub, M. Wilhelm, K. Landfester, C. Heldmann, H. W. Spiess, Macromol. Chem. Phys. 2003, 204, 787.
- 6a) I. Martin-Fabiani, D. K. Makepeace, P. G. Richardson, J. Lesage de la Haye, D. A. Venero, S. E. Rogers, F. D'Agosto, M. Lansalot, J. L. Keddie, Langmuir 2019, 35, 3822; b) A. Vagias, Q. Chen, G. H. ten Brink, D. Hermida-Merino, J. Scheerder, G. Portale, ACS Appl. Polym. Mater. 2019, 1, 2482.
- 7J. L. Keddie, Fundamentals of Latex Film Formation Processes and Properties, Springer, US 2010.
10.1007/978-90-481-2845-7 Google Scholar
- 8a) M. Durand, V. Molinier, T. Féron, J. M. Aubry, Prog. Org. Coat. 2010, 69, 344; b) X. Zou, Y. Yuan, Y. Ji, J. Coat. Technol. Res. 2023, 20, 1269.
- 9J. J. De Yoreo, N. A. J. M. Sommerdijk, Nat. Rev. Mater. 2016, 1, 16035.
- 10J. M. Salamanca, E. Ciampi, D. A. Faux, P. M. Glover, P. J. McDonald, A. F. Routh, A. C. I. A. Peters, R. Satguru, J. L. Keddie, Langmuir 2001, 17, 3202.
- 11S. A. Semerdzhiev, H. M. van der Kooij, R. Fokkink, J. van der Gucht, J. Sprakel, ACS Appl. Opt. Mater. 2024, 2, 750.
- 12H. Luo, L. E. Scriven, L. F. Francis, J. Colloid Interface Sci. 2007, 316, 500.
- 13L. Liu, Y. Liu, W. Wu, C. M. Miller, E. C. Dickey, Analyst 2015, 140, 6330.
- 14J. P. Patterson, Y. Xu, M. A. Moradi, N. A. J. M. Sommerdijk, H. Friedrich, Acc. Chem. Res. 2017, 50, 1495.
- 15a) Y. Zhu, C. Liu, S. Cui, Z. Lu, J. Ye, Y. Wen, W. Shi, X. Huang, L. Xue, J. Bian, Y. Li, Y. Xu, B. Zhang, Adv. Mater. 2023, 35, 2301549; b) Y. Xu, K. C. H. Tijssen, P. H. H. Bomans, A. Akiva, H. Friedrich, A. P. M. Kentgens, N. A. J. M. Sommerdijk, Nat. Commun. 2018, 9, 2582.
- 16J. Liang, X. Xiao, T. M. Chou, M. Libera, Acc. Chem. Res. 2021, 54, 2386.
- 17P. Zhang, H. Du, S. Cui, P. Zhou, Y. Xu, Responsive Mater. 2023, 1, 20230025.
- 18a) S. J. Kalista, J. R. Pflug, R. J. Varley, Polym. Chem. 2013, 4; b) R. B. d. Cunha, P. Agrawal, G. d. F. Brito, T. J. A. d. Mélo, J. Mater. Res. Technol. 2023, 27, 7304.
- 19M. Langille, T. Kulkarni, Improving Performance of Waterborne Inductrial Coatings with Amino Alcohols, ANGUS Chemical Company, USA 2021.
- 20a) A. L. Bowman, S. Mun, S. Nouranian, B. D. Huddleston, S. R. Gwaltney, M. I. Baskes, M. F. Horstemeyer, Polymer 2019, 170, 85; b) M. Klähn, R. Krishnan, J. M. Phang, F. C. H. Lim, A. M. van Herk, S. Jana, Polymer 2019, 179, 121635.
- 21V. Litvinov, Y. Men, Polymer 2022, 256, 125205.
- 22a) G. Gebel, J. Phys. Chem. B 1997, 101, 8; b) S. Kutsumizu, Macromolecules 2002, 35, 6298.
- 23a) F. Hu, Y. Sun, Y. Zhu, Y. Huang, Z. Li, Z. Sun, Nanoscale 2019, 11, 17350; b) H. Chang, Y. Lin, Y. Sheng, H. Tsao, Macromolecules 2013, 46, 5644; c) T. Hao, H. Tan, S. Li, Y. Wang, Z. Zhou, C. Yu, Y. Zhou, D. Yan, J Polym Sci. 2020, 58, 704.
- 24a) S. Zhang, H. J. Sun, A. D. Hughes, R. O. Moussodia, A. Bertin, Y. Chen, D. J. Pochan, P. A. Heiney, M. L. Klein, V. Percec, Proc. Natl. Acad. Sci. USA 2014, 111, 9058; b) N. Arai, K. Yasuoka, X. C. Zeng, ACS Nano 2016, 10, 8026.
- 25C. M. Hansen, Hansen Solubility Parameters A User's Handbook, CRC Press, Boca Raton, Florida 2007.
10.1201/9781420006834 Google Scholar
- 26C. V. Iancu, W. F. Tivol, J. B. Schooler, D. P. Dias, G. P. Henderson, G. E. Murphy, E. R. Wright, Z. Li, Z. Yu, A. Briegel, L. Gan, Y. He, G. J. Jensen, Nat. Protoc. 2006, 1, 2813.
- 27C. Chen, Y. Chang, B. Lin, C. Huang, M. D. Tsai, J. Am. Chem. Soc. 2019, 141, 19983.
- 28a) A. Eisenberg, B. Hird, R. B. Moore, Macromolecules 1990, 23, 4098; b) L. Zhang, N. R. Brostowitz, K. A. Cavicchi, R. A. Weiss, Macromol. React. Eng. 2013, 8, 81; c) M. A. Malmierca, A. G. Jiménez, I. M. Barrantes, P. Posadas, A. Rodríguez, L. Ibarra, A. Nogales, K. Saalwächter, J. L. Valentín, Macromolecules 2014, 47, 5655; d) J. S. Enokida, V. A. Tanna, H. H. Winter, E. B. Coughlin, Macromolecules 2018, 51, 7377.
- 29H. Friedrich, P. M. Frederik, G. de With, N. A. J. M. Sommerdijk, Angew. Chem., Int. Ed. 2010, 49, 7850.