CrS Doped MOF-Derived Carbon Implanted CoNi Particles as Exceedingly Effectual Oxygen Electrocatalysts in Sustainable Zinc-Air Batteries
Ramasamy Santhosh Kumar
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorS Tamilarasi
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorArul Manuel Stephan
Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003 India
Search for more papers by this authorAe Rhan Kim
Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong Jin Yoo
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorRamasamy Santhosh Kumar
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorS Tamilarasi
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorArul Manuel Stephan
Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003 India
Search for more papers by this authorAe Rhan Kim
Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Dong Jin Yoo
Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
Utilizing affordable bifunctional catalysts per strong ORR/OER (oxygen reduction and evolution reactions) ability and superior zinc-air battery performance is yet difficult due to the diverse mechanisms of ORR/OER. This work uses CoNi-MOF (metal-organic framework) as a self-template to yield the CrS doped CoNi/C bifunctional catalyst. Comparable to Pt/C and IrO2 commercial catalysts, the CrS@CoNi/C catalyst exhibits improved electrocatalytic activity toward OER and ORR due to its linked pellet architecture and intact metal sulfide@carbon structure. The CrS@CoNi/C catalyst has the most intriguing ORR/OER performance, with a significantly lower potential and an exceptionally extended cycle duration (E1/2 = 0.72 V and η10 = 260 mV). The CrS@CoNi/C-based aqueous zinc-air battery shows long-term charge–discharge stability (more than 100h/600 cycles) together with significant specific capacity (789.7 mAh g−1Zn) and power density (132.2 mW cm−2). Most significantly, after charge–discharge stability, the recharged CrS@CoNi/C-based alkaline zinc-air battery has been employed to exhibit less structural deformation for the cathode and more zincate ion production for the anode side electrodes, which is employed through TEM analysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401515-sup-0001-SuppMat.docx11.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Tang, X. Li, M. Courté, J. Peng, D. Fichou, ChemCatChem 2020, 12, 4038; b) J. Qin, Z. Liu, D. Wu, J. Yang, Appl. Catal., B 2020, 278, 119300; c) X. Tian, M. Xu, X. Ma, G. Mu, J. Xiao, S. Wang, ChemSusChem 2024, 17, 202400570; d) Y. Feng, Y. Xie, Y. Yu, Y. Chen, Q. Liu, H. Bao, F. Luo, S. Pan, Z. Yang, Angew. Chem., Int. Ed. 2024, 137, e202413417.
- 2a) P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li, H. Fu, Adv. Mater. 2019, 31, 1901666; b) J. Béjar, F. Espinosa-Magaña, M. Guerra-Balcázar, J. Ledesma-García, L. Álvarez-Contreras, N. Arjona, L. G. Arriaga, ACS Appl. Mater. Interfaces 2020, 12, 53760; c) T. Zhou, N. Zhang, C. Wu, Y. Xie, Energy Environ. Sci. 2020, 13, 1132.
- 3R. S. Kumar, S. Vijayapradeep, V. Sakthivel, D. Sayfiddinov, A. R. Kim, D. J. Yoo, ACS Applied Materials & Interfaces 2025, https://doi.org/10.1021/acsami.4c17439.
- 4J. Zhang, T. Zhang, J. Ma, Z. Wang, J. Liu, X. Gong, Carbon 2021, 172, 556.
- 5a) R. S. Kumar, P. Mannu, S. Prabhakaran, T. T. T. Nga, Y. Kim, D. H. Kim, J.-L. Chen, C.-L. Dong, D. J. Yoo, Adv. Sci. 2023, 10, 2303525; b) H. Hu, S. Pan, Z. Ma, K. Liu, Y. Li, H. Bao, C. Deng, F. Luo, Z. Yang, SusMat 2024, 4, e237.
- 6a) J. Wang, W. Zang, S. Xi, M. Kosari, S. J. Pennycook, H. C. Zeng, J. Mater. Chem. A 2020, 8, 17266; b) T. Liu, J. Mou, Z. Wu, C. Lv, J. Huang, M. Liu, Adv. Funct. Mater. 2020, 30, 2003407; c) Y. Hao, Y. Xu, N. Han, J. Liu, X. Sun, J. Mater. Chem. A 2017, 5, 17804.
- 7X. Long, W. Tang, C. Li, Z. Ma, K. Liu, Y. Li, Y. Chen, Y. Sun, Z. Yang, F. Luo, Chem. Commun. 2024, 60, 5747.
- 8a) S. Liu, I. S. Amiinu, X. Liu, J. Zhang, M. Bao, T. Meng, S. Mu, Chem. Eng. J. 2018, 342, 163; b) L. S. Bezerra, G. Maia, J. Mater. Chem. A 2020, 8, 17691; c) R. S. Kumar, S. Prabhakaran, S. Ramakrishnan, S. C. Karthikeyan, A. R. Kim, D. H. Kim, D. J. Yoo, Small 2023, 19, 2207096.
- 9a) J. Wang, Y. Zhang, S. Liao, D. Chen, A. Mensah, Q. Wei, ChemSusChem 2024, 17, 202301510; b) J. Béjar, L. Álvarez-Contreras, J. Ledesma-García, N. Arjona, L. G. Arriaga, J. Mater. Chem. A 2020, 8, 8554.
- 10a) D. Zhou, H. Fu, J. Long, K. Shen, X. Gou, J. Energy Chem. 2022, 64, 385; b) S. Hyun, A. Saejio, S. Shanmugam, Nanoscale 2020, 12, 17858; c) Z. Zhang, H. Zhang, Y. Yao, J. Wang, H. Guo, Y. Deng, X. Han, ChemSusChem 2021, 14, 1659; d) H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.
- 11Y. Xie, Y. Feng, S. Pan, H. Bao, Y. Yu, F. Luo, Z. Yang, Adv. Funct. Mater. 2024, 34, 2406351.
- 12a) Y. Niu, M. Xiao, J. Zhu, T. Zeng, J. Li, W. Zhang, D. Su, A. Yu, Z. Chen, J. Mater. Chem. A 2020, 8, 9177; b) K. Fu, Y. Wang, L. Mao, X. Yang, J. Jin, S. Yang, G. Li, Chem. Eng. J. 2018, 351, 94.
- 13a) S. Lu, J. Jiang, H. Yang, Y.-J. Zhang, D.-N. Pei, J.-J. Chen, Y. Yu, ACS Nano 2020, 14, 10438; b) B. Diaz, S. J. Sawhill, D. H. Bale, R. Main, D. C. Phillips, S. Korlann, R. Self, M. E. Bussell, Catal. Today 2003, 86, 191.
- 14a) Z. Yang, J. Gao, S. Liu, P. Zhu, S. Huang, D. Zeng, X. Zhao, G. Wang, Electrochim. Acta 2020, 364, 137301; b) W. Liu, J. Bao, L. Xu, M. Guan, Y. Lei, J. Power Sources 2020, 479, 229099; c) P. Shi, M. Huang, L. Cui, B. Zhang, L. Zhang, Q. An, L. Mai, J. Mater. Chem. A 2024, 12, 10764.
- 15a) D. C. Nguyen, D. T. Tran, T. L. L. Doan, D. H. Kim, N. H. Kim, J. H. Lee, Adv. Energy Mater. 2020, 10, 1903289; b) R. Santhosh Kumar, S. Ramakrishnan, S. Prabhakaran, A. R. Kim, D. R. Kumar, D. H. Kim, D. J. Yoo, J. Mater. Chem. A 2022, 10, 1999; c) C. Lai, M. Gong, Y. Zhou, J. Fang, L. Huang, Z. Deng, X. Liu, T. Zhao, R. Lin, K. Wang, K. Jiang, H. Xin, D. Wang, Appl. Catal., B 2020, 274, 119086; d) H. Chang, X. Liu, S. Zhao, Z. Liu, R. Lv, Q. Zhang, T.-F. Yi, Adv. Funct. Mater. 2024, 34, 2313491.
- 16K. Wang, J. Wu, S. Zheng, S. Yin, Chin. J. Struct. Chem. 2023, 42, 100104.
- 17D. Chen, X. Chen, Z. Cui, G. Li, B. Han, Q. Zhang, J. Sui, H. Dong, J. Yu, L. Yu, L. Dong, Chem. Eng. J. 2020, 399, 125718.
- 18a) M. Zhang, E. Zhang, C. Hu, Y. Zhao, H.-m. Zhang, Y. Zhang, M. Ji, J. Yu, G. Cong, H. Liu, J. Zhang, C. Zhu, J. Xu, ACS Appl. Mater. Interfaces 2020, 12, 11693; b) Y. Pan, J. Gao, Y. Li, E. Lv, U. Khan, X. Yang, J. Yao, A. Nairan, Q. Zhang, Small 2024, 20, 2304594; c) U. Khan, A. Nairan, J. Gao, Q. Zhang, Small Structures 2023, 4, 2200109.
- 19a) K. Chen, J. Long, G. Zhou, L. Kang, F. Zhao, Catal. Today 2024, 432, 114619; b) L. Chen, L. L. Cui, Z. Wang, X. He, W. Zhang, T. Asefa, ACS Sustainable Chem. Eng. 2020, 8, 13147; c) H. Zhou, F. Fan, H. Yu, Y. Xu, C. Yuan, Y. Wang, ChemCatChem 2022, 14, 202101807; d) J. Zhu, M. Xiao, Y. Zhang, Z. Jin, Z. Peng, C. Liu, S. Chen, J. Ge, W. Xing, ACS Catal. 2016, 6, 6335.
- 20X. Liu, X. Li, M. An, Y. Gao, Z. Cao, J. Liu, Electrochim. Acta 2020, 351, 136249.
- 21X. Mao, Y. Liu, Z. Chen, Y. Fan, P. Shen, Chem. Eng. J. 2022, 427, 130742.
- 22D. Yang, Z. Su, Y. Chen, K. Srinivas, X. Zhang, W. Zhang, H. Lin, Chem. Eng. J. 2022, 430, 133046.
- 23X. Zhao, J. Wang, J. Kang, X. Wang, H. Yu, C.-F. Du, Chin. J. Struct. Chem. 2023, 42, 100159.
- 24X. Duan, N. Pan, C. Sun, K. Zhang, X. Zhu, M. Zhang, L. Song, H. Zheng, J. Energy Chem. 2021, 56, 290.
- 25a) V. Vinothkumar, P. Naveenkumar, D. E. Oh, M. Maniyazagan, H.-W. Yang, S. Bong, S.-J. Kim, T. H. Kim, Vacuum 2024, 225, 113234; b) H. Zou, B. He, P. Kuang, J. Yu, K. Fan, ACS Appl. Mater. Interfaces 2018, 10, 22311.
- 26L. Wang, J. Liu, C. Tian, W. Zhao, P. Li, W. Liu, L. Song, Y. Liu, C.-A. Wang, Z. Xie, Nanomaterials 2023, 13, 715.
- 27X. Hang, Y. Xue, Y. Cheng, M. Du, L. Du, H. Pang, Inorg. Chem. 2021, 60, 13168.
- 28S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 29R. S. Kumar, P. Muthu Austeria, C. Sagaya Selvam Neethinathan, S. Ramakrishnan, K. Sekar, A. R. Kim, D. H. Kim, P. J. Yoo, D. J. Yoo, Appl. Surf. Sci. 2023, 641, 158469.
- 30D. Yang, Z. Su, Y. Chen, Y. Lu, B. Yu, K. Srinivas, B. Wang, W. Zhang, J. Mater. Chem. A 2020, 8, 22222.
- 31D. Ma, B. Hu, W. Wu, X. Liu, J. Zai, C. Shu, T. Tadesse Tsega, L. Chen, X. Qian, T. L. Liu, Nat. Commun. 2019, 10, 3367.
- 32T. P. Mofokeng, A. K. Ipadeola, Z. N. Tetana, K. I. Ozoemena, ACS Omega 2020, 5, 20461.
- 33M. B. Poudel, A. R. Kim, S. Ramakrishan, N. Logeshwaran, S. K. Ramasamy, H. J. Kim, D. J. Yoo, Composites, Part B 2022, 247, 110339.
- 34R. S. Kumar, D. Sayfiddinov, S. Tamilarasi, D. J. Yoo, Nanoscale 2024, 16, 14861.
- 35B. Qing, Y. Liu, D. Yang, M. Yang, B. Liu, H. Chen, H. Li, Small Methods 2024, 2401338.
- 36P. Lei, Y. Zhou, C. Dong, Y. Liu, S. Shuang, ACS Appl. Nano Mater. 2023, 6, 9369.
- 37R. Santhosh Kumar, S. C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J.-S. Kim, D. J. Yoo, Chem. Eng. J. 2023, 451, 138471.
- 38Z. Deng, Q. Yi, G. Li, Y. Chen, X. Yang, H. Nie, Electrochim. Acta 2018, 279, 1.
- 39X. Wang, Y. Yang, R. Wang, L. Li, X. Zhao, W. Zhang, Langmuir 2022, 38, 7280.
- 40Y. Wu, X. Tao, Y. Qing, H. Xu, F. Yang, S. Luo, C. Tian, M. Liu, X. Lu, Adv. Mater. 2019, 31, 1900178.
- 41Y. Chen, D. An, S. Sun, J. Gao, L. Qian, Materials 2018, 11, 269.
- 42P. Moriceau, B. Grzybowska, L. Gengembre, Y. Barbaux, Appl. Catal., A 2000, 199, 73.
- 43C. Li, Y. Feng, J. Jiang, J. Zhu, H. Gao, T. Zhao, G. Xu, L. Zhang, ACS Appl. Nano Mater. 2024, 7, 15416.
- 44Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. a. Chen, S. Huang, ACS Nano 2012, 6, 205.
- 45J. Yin, J. Jin, H. Liu, B. Huang, M. Lu, J. Li, H. Liu, H. Zhang, Y. Peng, P. Xi, C.-H. Yan, Adv. Mater. 2020, 32, 2001651.
- 46R. S. Kumar, R. Gokulapriyan, V. Sakthivel, D. Sayfiddinov, A. R. Kim, I. Arunkumar, D. J. Yoo, ChemCatChem 2024, 16, 202401229.
- 47F. Jaouen, J.-P. Dodelet, J. Phys. Chem. C 2009, 113, 15422.
- 48M. Wang, X. Huang, Z. Yu, P. Zhang, C. Zhai, H. Song, J. Xu, K. Chen, Nanomaterials 2022, 12, 4069.
- 49J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
- 50Y. Niu, X. Teng, S. Gong, M. Xu, S.-G. Sun, Z. Chen, Nano-Micro Lett. 2021, 13, 126.
- 51W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, Science 2021, 371, 46.
- 52G. Ehrlich, NY, 2002.
- 53C. Cachet, B. Saidani, R. Wiart, J. Electrochem. Soc. 1992, 139, 644.