Light-to-Spike Encoding Using Indium-Gallium-Zinc Oxide Phototransistor for all-Color Image Recognition with Dynamic Range and Precision Tunability
Ya-Chi Huang
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorYu-Chieh Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorKuan-Ting Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorChun-Tao Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorLi-Chung Shih
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorCorresponding Author
Jen-Sue Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101 Taiwan
E-mail: [email protected]
Search for more papers by this authorYa-Chi Huang
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorYu-Chieh Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorKuan-Ting Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorChun-Tao Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorLi-Chung Shih
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Search for more papers by this authorCorresponding Author
Jen-Sue Chen
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101 Taiwan
E-mail: [email protected]
Search for more papers by this authorAbstract
To enhance the efficiency of machine vision system, physical hardware capable of sensing and encoding is essential. However, sensing and encoding color information has been overlooked. Therefore, this work utilizes an indium-gallium-zinc oxide (IGZO) phototransistor to detect varying densities of red, green, and blue (RGB) light, converting them into corresponding drain current (ID) states. By applying stochastic gate voltage (VG) pulses to the IGZO phototransistor, the fluctuations are generated in these ID states. When the ID exceeds the threshold current (ITC), a spike signal is generated. This approach enables the conversion of light densities into spike signals, achieving spike-rate encoding. Moreover, adjusting the standard deviation (σ) of the VG pulses controls the range of light densities converted into spike rates, while altering the mean (μ) of the VG pulses changes the baseline level of spike rates. Remarkably, separate RGB channels offer a tunable encoding process, which can emphasize individual colors and correct color bias. The encoded spike rates are also fed into a spiking neural network (SNN) for CIFAR-10 pattern recognition, achieving an accuracy of 86%. The method allows the operation of SNN and shows the tunability in the process of light-to-spike encoding, opening possibilities for color image processing.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401502-sup-0001-SuppMat.docx4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cai, F. Wang, X. Wang, S. Li, Y. Wang, J. Yang, T. Yan, X. Zhan, F. Wang, R. Cheng, Adv. Funct. Mater. 2023, 33, 2212917.
- 2F. Zhou, Y. Chai, Nat. Electron. 2020, 3, 664.
- 3Y. Chai, Nature 2020, 579, 32.
- 4A. Simoni, M. Gottardi, A. Sartori, A. Zorat, presented at Proceedings of IECON'94-20th Annual Conference of IEEE Industrial Electronics, IEEE, Bologna, 1994.
- 5H. Golnabi, A. Asadpour, Robot. Comput.-Integr. Manuf. 2007, 23, 630.
- 6J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo, Z. Xie, Q. Zhu, Z. Bao, N. Zhong, X. Tang, Adv. Sci. 2022, 9, 2106092.
- 7L. Erskine, E. Herrera, ASN NEURO 2014, 6, 175909141456210.
- 8S.-Y. Choi, B. Borghuis, R. Rea, E. S. Levitan, P. Sterling, R. H. Kramer, Neuron 2005, 48, 555.
- 9M. Meister, L. Lagnado, D. A. Baylor, Science 1995, 270, 1207.
- 10W. Chen, Z. Zhang, G. Liu, iScience 2022, 25, 103729.
- 11H. Li, J. Hu, Y. Zhang, A. Chen, J. Zhou, Y. Zhao, Y. Xu, B. Yu, Adv. Funct. Mater. 2024, 34, 2314456.
- 12Q. Wu, B. Dang, C. Lu, G. Xu, G. Yang, J. Wang, X. Chuai, N. Lu, D. Geng, H. Wang, Nano Lett. 2020, 20, 8015.
- 13M. D. McDonnell, L. M. Ward, Nat. Rev. Neurosci. 2011, 12, 415.
- 14S. Subbulakshmi Radhakrishnan, A. Sebastian, A. Oberoi, S. Das, S. Das, Nat. Commun. 2021, 12, 2143.
- 15F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun, R. Duan, C. Wang, J. Han, W. Deng, W. Chen, Nat. Commun. 2023, 14, 1938.
- 16K. A. Hussey, S. E. Hadyniak, R. J. Johnston Jr, Front. Cell Dev. Biol. 2022, 10, 878350.
- 17T. Yoshimatsu, P. Bartel, C. Schröder, F. K. Janiak, F. St-Pierre, P. Berens, T. Baden, Sci. Adv. 2021, 7, eabj6815.
- 18D. Holmes, Nature 2018, 561, S2.
- 19D. R. Williams, S. A. Burns, D. T. Miller, A. Roorda, Biomed. Opt. Express 2023, 14, 1307.
- 20S. Nirenberg, S. M. Carcieri, A. L. Jacobs, P. E. Latham, Nature 2001, 411, 698.
- 21S. Nirenberg, P. E. Latham, Curr. Opin. Neurobiol. 1998, 8, 488.
- 22M. Meister, Proc. Natl. Acad. Sci 1996, 93, 609.
- 23U. S. Kim, O. A. Mahroo, J. D. Mollon, P. Yu-Wai-Man, Front. Neurol. 2021, 12, 661938.
- 24W.-G. Kim, Y. J. Tak, B. Du Ahn, T. S. Jung, K.-B. Chung, H. J. Kim, Sci. Rep. 2016, 6, 23039.
- 25Y. Guan, Y. Zhang, J. Li, J. Li, Y. Zhang, Z. Wang, Y. Ding, M. Chan, X. Wang, L. Lu, Appl. Surf. Sci. 2023, 625, 157177.
- 26F.-M. Chang, S. Brahma, J.-H. Huang, Z.-Z. Wu, K.-Y. Lo, Sci. Rep. 2019, 9, 905.
- 27S. Song, J. Wei, X. He, G. Yan, M. Jiao, W. Zeng, F. Dai, M. Shi, RSC Adv. 2021, 11, 35361.
- 28N. Köpfle, K. Ploner, P. Lackner, T. Götsch, C. Thurner, E. Carbonio, M. Hävecker, A. Knop-Gericke, L. Schlicker, A. Doran, Catalysts 2020, 10, 1000.
- 29S. R. Teeparthi, E. W. Awin, R. Kumar, Sci. Rep. 2018, 8, 5541.
- 30P. Lackner, J. I. J. Choi, U. Diebold, M. Schmid, J. Mater. Chem. A 2019, 7, 24837.
- 31Y. Shuang, S. Hatayama, J. An, J. Hong, D. Ando, Y. Song, Y. Sutou, Sci. Rep. 2019, 9, 20209.
- 32C. Kim, Y. H. Kim, Y. Y. Noh, S. J. Hong, M. J. Lee, Adv. Electron. Mater. 2018, 4, 1700440.
- 33D. Kim, Y.-g. Kim, B. H. Kang, J. H. Lee, J. Chung, H. J. Kim, J. Mater. Chem. C 2020, 8, 165.
- 34S. Y. Park, Y. Choi, Y. H. Seo, H. Kim, D. H. Lee, P. L. Truong, Y. Jeon, H. Yoo, S. J. Kwon, D. Lee, Micromachines 2024, 15, 103.
- 35L. Zhu, Q. Fang, G. He, M. Liu, L. Zhang, J. Phys. D: Appl. Phys. 2006, 39, 5285.
- 36C. Fulton, G. Lucovsky, R. Nemanich, J. Appl. Phys. 2006, 99, 063708.
- 37J. B. Park, J. Kim, Y. W. Jang, H. B. Park, S. H. Yang, D. H. Kim, M. Kim, A. Facchetti, S. K. Park, Adv. Opt. Mater. 2023, 11, 2201559.
- 38A. D. Mottram, Y.-H. Lin, P. Pattanasattayavong, K. Zhao, A. Amassian, T. D. Anthopoulos, ACS Appl. Mater. Interfaces 2016, 8, 4894.
- 39A. Sen, H. Park, P. Pujar, A. Bala, H. Cho, N. Liu, S. Gandla, S. Kim, ACS Nano 2022, 16, 9267.
- 40I.-W. Wang, L.-C. Shih, J.-T. Li, J.-S. Chen, IEEE Trans. Electron Devices 2023, 70, 1692.
- 41K.-J. Zhou, P.-H. Chen, Y.-Z. Zheng, M.-C. Tai, Y.-X. Wang, Y.-T. Chien, P.-J. Sun, H.-C. Huang, T.-C. Chang, S. M. Sze, J. Mater. Chem. C 2022, 10, 9192.
- 42D. Li, Z. Jia, Y. Tang, C. Song, K. Liang, H. Ren, F. Li, Y. Chen, Y. Wang, X. Lu, Nano Lett. 2022, 22, 5434.
- 43C.-H. Yang, Y.-C. Huang, L.-C. Shih, S.-C. Mao, J.-J. Wu, J.-S. Chen, ACS Photonics 2024, 11, 660.
- 44T. Chen, S. Zhan, B. Li, B. Hou, H. Zhou, Adv. Opt. Mater. 2024, 12, 2302451.
- 45R. Chen, H. Yang, R. Li, G. Yu, Y. Zhang, J. Dong, D. Han, Z. Zhou, P. Huang, L. Liu, Sci. Adv. 2024, 10, eadl1299.
- 46B. He, G. He, L. Zhu, J. Cui, E. Fortunato, R. Martins, Adv. Funct. Mater. 2024, 34, 2310264.
- 47J. Park, S. Hong, ACS Photonics 2024, 11, 1517.
- 48M. G. Kim, J. H. Jeong, J. H. Ma, M. H. Park, S. Kim, S. Park, S. J. Kang, J. Mater. Chem. C 2023, 11, 15178.
- 49Y. Zhai, G. Chen, J. Ji, Z. Wu, Y. Li, Q. Wang, Physica E 2019, 113, 92.
- 50Z. Xin, Y. Tan, T. Chen, E. Iranmanesh, L. Li, K.-C. Chang, S. Zhang, C. Liu, H. Zhou, Nanoscale Adv. 2021, 3, 5046.
- 51H. Zhang, F. Liang, L. Yang, Z. Gao, K. Liang, S. Liu, Y. Ye, H. Yu, W. Chen, Y. Kang, Adv. Mater. 2024, 36, 2405874.
- 52F. Liang, H. Zhang, S. Zhu, L. Yang, Z. Huang, K. Liang, Z. Xing, H. Wang, M. Zhang, J. Li, IEEE Electron Device Lett. 2024, 45, 10701594.
- 53H. Zhang, F. Liang, K. Song, C. Xing, D. Wang, H. Yu, C. Huang, Y. Sun, L. Yang, X. Zhao, Appl. Phys. Lett. 2021, 118.
- 54J. Park, M. S. Kim, J. Kim, S. Chang, M. Lee, G. J. Lee, Y. M. Song, D.-H. Kim, Sci. Rob. 2024, 9, eadk6903.
- 55Y. Hou, J. Li, J. Yoon, A. M. Knoepfel, D. Yang, L. Zheng, T. Ye, S. Ghosh, S. Priya, K. Wang, Sci. Adv. 2023, 9, eade2338.
- 56C. Kim, J. Hong, J. Jang, G.-Y. Lee, Y. Kim, Y. Jeong, B. Lee, Sci. Adv. 2024, 10, eadn9000.
- 57Q. Yang, Y. Kang, C. Zhang, H. Chen, T. Zhang, Z. Bian, X. Su, W. Xu, J. Sun, P. Wang, Adv. Sci. 2024, 11, 2403043.
- 58X. Dong, H. Li, K. Wang, B. Menze, M. Jakobi, A. K. Yetisen, A. W. Koch, Adv. Opt. Mater. 2024, 12, 2300860.
- 59C. Jo, J. Kim, J. Y. Kwak, S. M. Kwon, J. B. Park, J. Kim, G. S. Park, M. G. Kim, Y. H. Kim, S. K. Park, Adv. Mater. 2022, 34, 2108979.
- 60A. Henkes, J. K. Eshraghian, H. Wessels, R. Soc. Open Sci. 2024, 11, 231606.
- 61S. Oh, S. Lee, S. Y. Woo, D. Kwon, J. Im, J. Hwang, J.-H. Bae, B.-G. Park, J.-H. Lee, IEEE Access 2021, 9, 78098.
- 62W. Guo, K. Yang, H.-G. Stratigopoulos, H. Aboushady, K. N. Salama, IEEE Trans. Artif. Intell. 2023, 5, 1869.
10.1109/TAI.2023.3306334 Google Scholar
- 63M. Yuan, C. Zhang, Z. Wang, H. Liu, G. Pan, H. Tang, Neural Networks 2024, 172, 106092.
- 64R. Szeliski, Computer Vision: Algorithms and Applications, Springer Nature, Berlin, 2022.
10.1007/978-3-030-34372-9 Google Scholar
- 65J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong, W. D. Lu, Proc. IEEE 2023, 111, 1014.