Sn Penetrated Zincophilic Interface Design in Porous Zn Substrate for High Performance Zn-Ion Battery
Wangyang Han
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorYihong Tan
Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorLiping Ni
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorXimei Sun
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Kunzhen Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Leilei Lu
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hui Zhang
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWangyang Han
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorYihong Tan
Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorLiping Ni
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorXimei Sun
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
Search for more papers by this authorCorresponding Author
Kunzhen Li
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Leilei Lu
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hui Zhang
School of Materials Science and Engineering, Anhui University, Hefei, 230601 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Rechargeable zinc-ion batteries are considered an ideal energy storage system due to their low cost and nonflammable aqueous electrolyte. However, dendrite growth, hydrogen evolution reaction, and self-corrosion of zinc anode brought about serious safety risks including short circuits and electrode expansion. Therefore, a modified host-design strategy with a 3D porous structure and bulk-phase penetrated zincophilic interface is proposed to boost the stability and lifetime of the Zn anode. The porous Zn substrate is constructed by universal HCl etching and the uniform and tight Sn-penetrated zincophilic interface is formed by effective electron beam evaporation (EBE). The porous substrate can uniform zinc ion flux and the Sn coating could effectively improve zinc ion deposition behavior, thus inhibiting the risk of dendrites growth and side reaction. As a result, the 3D Zn substrate with Sn interface (3D Zn@Sn) exhibits prolonged galvanostatic cycling performance up to 4500 h with a low polarization of ≈25 mV (1 mA cm−2, 1 mAh cm−2) in the symmetric cell. The full cell assembled with KVOH@Ti could maintain a high specific capacity of 148.6 mAh g−1 after 500 galvanostatic cycles (10 A g−1). This work proposed an improved electrode design to realize the high performance of zinc ion batteries.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smtd202401499-sup-0001-SuppMat.docx13.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Acc. Chem. Res. 2013, 46, 1053.
- 2L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938.
- 3K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Nature 2018, 559, 467.
- 4S. Li, D. Yu, J. Liu, N. Chen, Z. Shen, G. Chen, S. Yao, F. Du, Adv. Sci. 2023, 10, 2206836.
- 5G. Li, Y. Su, S. Zhou, J. Shen, D. Liu, S. Lv, J. Wang, W. Yu, X. Dong, X. Wang, Chem. Eng. J. 2023, 469, 143816.
- 6Z. Cheng, K. Wang, J. Fu, F. Mo, P. Lu, J. Gao, D. Ho, B. Li, H. Hu, Adv. Energy Mater. 2024, 14, 2304003.
- 7C. Yuan, L. Yin, P. Du, Y. Yu, K. Zhang, X. Ren, X. Zhan, S. Gao, Chem. Eng. J. 2022, 442, 136231.
- 8X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang, S. Zhou, C. D. Ling, Z. Guo, Adv. Energy Mater. 2020, 10, 1904163.
- 9N. Yang, Y. Gao, F. Bu, Q. Cao, J. Yang, J. Cui, Y. Wang, J. Chen, X. Liu, C. Guan, Adv. Mater. 2024, 36, 2312934.
- 10Y. Gao, N. Yang, F. Bu, Q. Cao, J. Pu, Y. Wang, T. Meng, J. Chen, W. Zhao, C. Guan, Energ Environ. Sci. 2024, 17, 1894.
- 11J. Zheng, Z. Huang, F. Ming, Y. Zeng, B. Wei, Q. Jiang, Z. Qi, Z. Wang, H. Liang, Small 2022, 18, 2200006.
- 12Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.
- 13L. Wang, W. Huang, W. Guo, Z. H. Guo, C. Chang, L. Gao, X. Pu, Adv. Funct. Mater. 2022, 32, 2108533.
- 14X. Yang, J. Lv, C. Cheng, Z. Shi, J. Peng, Z. Chen, X. Lian, W. Li, Y. Zou, Y. Zhao, M. H. Rümmeli, S. Dou, J. Sun, Adv. Sci. 2023, 10, 2206077.
- 15J. B. Park, C. Choi, S. W. Jung, B. C. Min, J. H. Park, D.-W. Kim, Adv. Mater. 2024, 36, 2308684.
- 16Y. Xin, J. Qi, H. Xie, Y. Ge, Z. Wang, F. Zhang, B. He, S. Wang, H. Tian, Adv. Funct. Mater. 2024, 34, 2403222.
- 17H. Chen, W. Zhang, S. Yi, Z. Su, Z. Zhao, Y. Zhang, B. Niu, D. Long, Energ Environ. Sci. 2024, 17, 3146.
- 18B. Li, K. Yang, J. Ma, P. Shi, L. Chen, C. Chen, X. Hong, X. Cheng, M.-C. Tang, Y.-B. He, F. Kang, Angew. Chem., Int. Ed. 2022, 61, 202212587.
- 19J.-L. Yang, P. Yang, W. Yan, J.-W. Zhao, H. J. Fan, Energy Storage Mater. 2022, 51, 259.
- 20S. Zhai, X. Shi, K. Jiang, X. Tan, W. Zhang, J. Zhang, H. Zhang, Z. Li, Chem. Eng. J. 2022, 437, 135246.
- 21J. Zheng, X. Liu, Y. Zheng, A. N. Gandi, X. Kuai, Z. Wang, Y. Zhu, Z. Zhuang, H. Liang, Nano Lett. 2023, 23, 6156.
- 22P. Xiao, Y. Wu, K. Liu, X. Feng, J. Liang, Y. Zhao, C. Wang, X. Xu, T. Zhai, H. Li, Angew. Chem., Int. Ed. 2023, 62, 202309765.
- 23X. Song, L. Bai, C. Wang, D. Wang, K. Xu, J. Dong, Y. Li, Q. Shen, J. Yang, ACS Nano 2023, 17, 15113.
- 24Z. Cai, J. Wang, S. Lian, J. Chen, F. Lang, Z. Li, Q. Li, Adv. Funct. Mater. 2023, 2401367, https://doi.org/10.1002/adfm.202401367.
- 25B. Wei, J. Zheng, Abhishek, X. Liu, J. Wu, Z. Qi, Z. Hou, R. Wang, J. Ma, A. N. Gandi, Z. Wang, H. Liang, Adv. Energy Mater. 2024, 14, 2401018.
- 26Z. Bie, Q. Yang, X. Cai, Z. Chen, Z. Jiao, J. Zhu, Z. Li, J. Liu, W. Song, C. Zhi, Adv. Energy Mater. 2022, 12, 2202683.
- 27G. Li, X. Wang, S. Lv, J. Wang, W. Yu, X. Dong, D. Liu, Adv. Funct. Mater. 2023, 33, 2208288.
- 28R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang, W. Zhou, B. Wang, Z. Yang, X. Wang, L. Wang, Z. Sun, F. Bu, Z. Zhao, W. Li, D. Zhao, D. Chao, Adv. Mater. 2023, 35, 2209288.
- 29Q. Cao, Z. Pan, Y. Gao, J. Pu, G. Fu, G. Cheng, C. Guan, Adv. Funct. Mater. 2022, 32, 2205771.
- 30W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang, X. Xia, J. Tu, Mater. Today Energy 2021, 20, 100675.
- 31M. Zhou, C. Fu, L. Qin, Q. Ran, S. Guo, G. Fang, X. Lang, Q. Jiang, S. Liang, Energy Storage Mater. 2022, 52, 161.
- 32Y. Li, H. Jia, U. Ali, B. Liu, Y. Gao, L. Li, L. Zhang, F. Chai, C. Wang, Chem. Eng. J. 2022, 450, 138374.
- 33S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang, X. Yang, Adv. Mater. 2021, 33, 2008424.
- 34P. Xiong, Y. Kang, H. Yuan, Q. Liu, S. H. Baek, J. M. Park, Q. Dou, X. Han, W.-S. Jang, S. J. Kwon, Y.-M. Kim, W. Li, H. S. Park, Appl. Phys. Rev. 2022, 9, 011401.
- 35Y. Liu, J. Hu, Q. Lu, M. Hantusch, H. Zhang, Z. Qu, H. Tang, H. Dong, O. G. Schmidt, R. Holze, M. Zhu, Energy Storage Mater. 2022, 47, 98.
- 36W. Yuan, X. Nie, G. Ma, M. Liu, Y. Wang, S. Shen, N. Zhang, Angew. Chem., Int. Ed. 2023, 62, 202218386.
- 37Z. Chen, J. Zhao, Q. He, M. Li, S. Feng, Y. Wang, D. Yuan, J. Chen, H. N. Alshareef, Y. Ma, ACS Energy Lett. 2022, 7, 3564.
- 38X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi, R. Huang, B. Liu, S. Li, Y. Wu, M. Wang, Y. Su, S. Dou, J. Sun, Adv. Mater. 2021, 33, 2105951.
- 39X.-Y. Fan, H. Yang, B. Feng, Y. Zhu, Y. Wu, R. Sun, L. Gou, J. Xie, D.-L. Li, Y.-L. Ding, Chem. Eng. J. 2022, 445, 136799.
- 40R. Yuksel, O. Buyukcakir, W. K. Seong, R. S. Ruoff, Adv. Energy Mater. 2020, 10, 1904215.
- 41P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. Van Ree, Adv. Sci. 2021, 8, 2100309.
- 42H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox, M. Wang, H. Zhou, L. Zhai, A. Kushima, Y. Du, Z. Feng, X. Shan, Y. Yang, Nat. Commun. 2021, 12, 237.
- 43X. Zhu, X. Li, M. L. K. Essandoh, J. Tan, Z. Cao, X. Zhang, P. Dong, P. M. Ajayan, M. Ye, J. Shen, Energy Storage Mater. 2022, 50, 243.
- 44K. Zhu, J. Luo, D. Zhang, N. Wang, S. Pan, S. Zhou, Z. Zhang, G. Guo, P. Yang, Y. Fan, S. Hou, Z. Shao, S. Liu, L. Lin, P. Xue, G. Hong, Y. Yang, Y. Yao, Adv. Mater. 2024, 36, 2311082.
- 45P. He, J. Huang, Adv. Mater. 2022, 34, 2109872.
- 46M. Tian, C. Liu, J. Zheng, X. Jia, E. P. Jahrman, G. T. Seidler, D. Long, M. Atif, M. Alsalhi, G. Cao, Energy Storage Mater. 2020, 29, 9.
- 47J. Zhang, W. Huang, L. Li, C. Chang, K. Yang, L. Gao, X. Pu, Adv. Mater. 2023, 35, 2300073.
- 48B. Delley, J. Chem. Phys. 1990, 92, 508.
- 49B. Delley, J. Chem. Phys. 2000, 113, 7756.
- 50J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 51S. Grimme, J. Comput. Chem. 2006, 27, 1787.