Boosting FRET Efficiency of Chromophores with Aggregation-Caused Quenching by a Crystallization-Induced Precise Co-assembly Strategy
Qian Zhou
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorXiaomin Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorLijian Ning
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYuhui Song
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYanli Wang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorJinkun Feng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorChun-Lin Sun
State Key Laboratory of Applied Organic, Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorJun Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorQiuyu Gong
Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Qichun Zhang
Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yinjuan Huang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQian Zhou
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorXiaomin Zhang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorLijian Ning
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYuhui Song
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorYanli Wang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorJinkun Feng
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorChun-Lin Sun
State Key Laboratory of Applied Organic, Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorJun Li
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, No. 127, Youyi Road (West), Xi'an, Shaanxi, 710072 P. R. China
Search for more papers by this authorQiuyu Gong
Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061 P. R. China
Search for more papers by this authorCorresponding Author
Qichun Zhang
Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yinjuan Huang
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University, Xi'an, 710049 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Förster resonance energy transfer (FRET) plays a critical role in organic optoelectronic materials. However, developing facile and effective strategies to achieve high-efficiency energy harvesting of chromophores with aggregation-caused quenching (ACQ) remains an appealing yet challenging task, that has not yet been explored. Herein, a subtly strategy, crystallization-induced precise co-assembly (CIPCA) involving a molecular “lightening agent,” to effectively improve FRET efficiency of ACQ chromophores is developed. Bis(phenylethynyl)anthracene (BPA) and bis(phenylethynyl)naphthacene (BPN) with significant ACQ effect are chosen as representative FRET donor and acceptor, respectively, and weakly-fluorescent octafluoronaphthalene (OFN) acted as the “lightening agent.” Thanks to precise co-assembly with OFN, the PLQY of solid BPA is enhanced by 107%, and the BPN powder can be unprecedentedly lighted. More importantly, through such powerful CIPCA, the monotonous and weak emission for BPA@BPN can be remarkably regulated to colorful and much brighter ones with FRET efficiency improvement of as high as 180–270%. An in-depth understanding of FRET regulation is elucidated through a precise correlation of the supramolecular structures and properties. Such achievements allow to successfully fabricate distinct multi-stimuli-responsive fluorescent patterns and highly-emissive colorful flowers with high flexibility. This research provides an efficient strategy to improve the FRET efficiency of ACQ pairs.
Conflict of Interest
The authors declare no Conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401439-sup-0001-SuppMat.docx5.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. B. Nielsen, S. Holliday, H.-Y. Chen, S. J. Cryer, I. McCulloch, Acc. Chem. Res. 2015, 48, 2803.
- 2Y. J. Huang, Z. R. Wang, Z. Chen, Q. C. Zhang, Angew. Chem., Int. Ed. 2019, 58, 9696.
- 3a) Z. Y. Yang, Z. Mao, Z. L. Xie, Y. Zhang, S. W. Liu, J. Zhao, J. R. Xu, Z. G. Chi, M. p. Aldred, Chem. Soc. Rev. 2017, 46, 915; b) H. Liu, Y. Cao, Y. Deng, L. Wie, J. Yan, L. Xiao, Chem. Biomed. Imaging 2024, 2, 56; c) R. Chen, Z. Li, C. Peng, L. Wen, L. Xiao, Y. Li, Anal. Chem. 2022, 94, 15902; d) J. Yang, X. Wang, J. Liu, W. Chi, L. Zhang, L. Xiao, J.-W. Yan, Anal. Chem. 2022, 94, 13432; e) H. Liu, Y. Li, L. Wei, Z. Ye, J. Yuan, L. Xiao, Nano Today 2024, 58, 102434.
- 4Y. J. Huang, L. J. Ning, X. M. Zhang, Q. Zhou, Q. Y. Gong, Q. C. Zhang, Chem. Soc. Rev. 2024, 53, 1090.
- 5J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
- 6L. L. Wu, C. S. Huang, B. P. Emery, A. C. Sedgwick, S. D. Bull, X. P. He, H. Tian, J. Yoon, J. L. Sessler, T. D. James, Chem. Soc. Rev. 2020, 49, 5110.
- 7L. Reste, J. Hohlbein, K. Gryte, A. N. Kapanidis, Biophys. J. 2012, 102, 2658.
- 8W. R. Algar, N. Hildebrandt, S. S. Vogel, I. L. Medintz, Nat. Methods 2019, 16, 815.
- 9A. J. Liu, L. Gedda, M. Axelsson, M. Pavliuk, K. Edwards, L. Hammarstrom, H. N. Tian, J. Am. Chem. Soc. 2021, 143, 2875.
- 10M. A. Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor, S. V. Bhosale, Chem. Rev. 2016, 116, 11685.
- 11T. Wang, X. C. Wang, R. Q. Yang, C. X. Li, Sol. RRL 2021, 5, 2100496.
- 12Y. F. Jiang, J. McNeill, Chem. Rev. 2017, 117, 838.
- 13N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, I. L. Medintz, Chem. Rev. 2017, 117, 536.
- 14A. J. P. Teunissen, C. P. Medina, A. Meijerink, W. J. M. Mulder, Chem. Soc. Rev. 2018, 47, 7027.
- 15Y. S. Wang, J. Yang, M. M. Fang, Y. S. Yu, B. Zou, L. W. Wang, Y. Tian, J. X. Cheng, B. Z. Tang, Z. Li, Matter 2020, 3, 449.
- 16A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi, J. Am. Chem. Soc. 2004, 126, 301.
- 17Y. Jiang, Y. Y. Liu, X. Liu, H. Lin, K. Gao, W. Y. Lai, W. Huang, Chem. Soc. Rev. 2020, 49, 5885.
- 18J. Yang, Z. G. Chi, W. H. Zhu, B. Z. Tang, Z. Li, Sci. China Chem. 2019, 62, 1090.
- 19C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203.
- 20A. A. Bakulin, S. Morgan, T. Kehoe, M. B. Wilson, A. Chin, D. Zigmantas, D. Egorova, A. Rao, Nat. Chem. 2016, 8, 16.
- 21Y. J. Huang, Q. Y. Gong, J. Ge, P. P. Tang, F. Yu, L. Xiao, Z. R. Wang, H. D. Sun, J. Yu, D.-S. Li, Q. H. Xiong, Q. C. Zhang, ACS Nano 2020, 14, 15962.
- 22Y. Qin, Q.-H. Ling, Y.-T. Wang, Y.-X. Hu, L. Hu, X. L. Zhao, D. Wang, H.-B. Yang, L. Xu, B. Z. Tang, Angew. Chem., Int. Ed. 2023, 62, 202308210.
- 23A. Garci, S. Abid, A. H. G. David, L. O. Jones, C. S. Azad, M. Ovalle, P. J. Brown, C. L. Stern, X. G. Zhao, L. Malaisrie, G. C. Schatz, R. M. Young, M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc. 2023, 145, 18391.
- 24A. Rakovich, I. Nabiev, A. Sukhanova, V. Lesnyak, N. Gaponik, Y. P. Rakovich, J. F. Donegan, ACS Nano 2013, 7, 2154.
- 25Y. J. Huang, J. Xing, Q. Y. Gong, L.-C. Chen, G. F. Liu, C. J. Yao, Z. R. Wang, H.-L. Zhang, Z. Chen, Q. C. Zhang, Nat. Commun. 2019, 10, 169.
- 26H. Q. Ye, G. F. Liu, S. Liu, D. Casanova, X. Ye, X. T. Tao, Q. C. Zhang, Q. H. Xiong, Angew. Chem., Int. Ed. 2018, 57, 1928.
- 27a) Y. Q. Sun, Y. L. Lei, L. S. Liao, W. P. Hu, Angew. Chem., Int. Ed. 2017, 56, 10352; b) L. Sun, W. Zhu, X. Zhang, L. Li, H. Dong, W. Hu, J. Am. Chem. Soc. 2021, 143, 19243; c) Q. Lv, X.-D. Wang, Y. Yu, M.-P. Zhuo, M. Zheng, L.-S. Liao, Nat. Commun. 2022, 13, 3099; d) B. Liu, J. Gao, A. Hao, P. Xing, Angew. Chem., Int. Ed. 2023, 62, 202305135; e) J. Vainauskas, T. H. Borchers, M. Arhangelskis, L. J. M. McPherson, T. S. Spilfogel, E. Hamzehpoor, F. Topić, S. J. Coles, D. F. Perepichka, C. J. Barrett, T. Friščić, Chem. Sci. 2023, 14, 13031; f) H. Ren, J. Hu, Y.-J. Liu, Y. Liu, B. Xu, W. Tian, Angew. Chem., Int. Ed. 2024, 63, 202411911.
- 28L. Y. Bai, P. Bose, Q. Gao, Y. X. Li, R. Ganguly, Y. L. Zhao, J. Am. Chem. Soc. 2017, 139, 8792.
- 29G. R. Hanson, P. Jensen, J. McMurtrie, L. Rintoul, A. S. Micallef, Chem. – Eur. J. 2009, 15, 4156.
- 30H. L. Stern, A. Cheminal, S. R. Yost, K. Broch, S. L. Bayliss, K. Chen, M. Tabachnyk, K. Thorley, N. Greenham, J. M. Hodgkiss, J. Anthony, M. Head-Gordon, A. J. Musser, A. Rao, R. H. Friend, Nat. Chem. 2017, 9, 1205.
- 31C. Zeiser, L. Moretti, D. Lepple, G. Cerullo, M. Maiuri, K. Broch, Angew. Chem., Int. Ed. 2020, 59, 19966.
- 32S. A. Green, D. J. Simpson, G. Zhou, P. S. Ho, N. Blough, J. Am. Chem. Soc. 1990, 112, 7337.
- 33E. M. Giacobbe, Q. X. Mi, M. T. Colvin, B. Cohen, C. Ramanan, A. Scott, S. Yeganeh, T. Marks, M. Ratner, M. Wasielewski, J. Am. Chem. Soc. 2009, 131, 3700.
- 34X. D. Wang, Q. Liao, Q. H. Kong, Y. Zhang, Z. Z. Xu, X. M. Lu, H. B. Fu, Angew. Chem., Int. Ed. 2014, 53, 5863.
- 35J. D. Wright, K. Yakushi, H. Kuroda, Acta. Cryst., Sect. B 1978, 34, 1934.
- 36H. Tsuchiya, F. Marumo, H. Saito, Acta. Cryst., Sect. B 1972, 28, 1935.
- 37Y. L. Lei, Y. Q. Sun, Y. Zhang, H. Y. Zhang, H. H. Zhang, Z. G. Meng, W.-Y. Wong, J. N. Yao, H. B. Fu, Nat. Commun. 2018, 9, 4358.
- 38H. Wallrabe, A. Periasamy, Curr. Opin. Biotechnol 2005, 16, 19.
- 39Y.-Q. Sun, Y.-L. Lei, X.-H. Sun, S.-T. Lee, L.-S. Liao, Chem. Mater. 2015, 27, 1157.
- 40H. Y. Xia, K. Xie, G. Zou, Molecules 2017, 22, 2236.
- 41K. Okamoto, Y. Sako, Curr. Opin. Struct. Biol. 2017, 46, 16.