Photoswitchable Gold Nanoparticles for Super-Resolution Radial Fluctuation Imaging in Nanostructured Materials
Julie Probst
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
Search for more papers by this authorPrerit Mathur
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
Search for more papers by this authorMeiyu Gai
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS UK
Search for more papers by this authorTieyan Si
Physics Department, School of Physics, Harbin Institute of Technology, Yikuang Street 2 2H, Harbin, 150080 P. R. China
Search for more papers by this authorQiang He
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Search for more papers by this authorChangyong Gao
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorHanchao Gao
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600 Switzerland
Search for more papers by this authorAndrei V Sapelkin
School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS UK
Search for more papers by this authorMichael Kappl
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorGuangyu Qiu
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Search for more papers by this authorJing Wang
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600 Switzerland
Search for more papers by this authorCorresponding Author
Johannes Frueh
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Stavros Stavrakis
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
E-mail: [email protected]; [email protected]
Search for more papers by this authorJulie Probst
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
Search for more papers by this authorPrerit Mathur
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
Search for more papers by this authorMeiyu Gai
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS UK
Search for more papers by this authorTieyan Si
Physics Department, School of Physics, Harbin Institute of Technology, Yikuang Street 2 2H, Harbin, 150080 P. R. China
Search for more papers by this authorQiang He
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Search for more papers by this authorChangyong Gao
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 P. R. China
Search for more papers by this authorHanchao Gao
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600 Switzerland
Search for more papers by this authorAndrei V Sapelkin
School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS UK
Search for more papers by this authorMichael Kappl
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
Search for more papers by this authorGuangyu Qiu
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Search for more papers by this authorJing Wang
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600 Switzerland
Search for more papers by this authorCorresponding Author
Johannes Frueh
Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080 P. R. China
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093 Switzerland
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Stavros Stavrakis
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093 Switzerland
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Camera-based super-resolution approaches surpass the diffraction limit of conventional optical microscopy by relying on the stochastic activation and precise localization of fluorescent molecules. However, traditional probes such as organic dyes and quantum dots present challenges such as photobleaching and blinking variability, which limit their application in super-resolution imaging, particularly in non-liquid environments. Herein, the study demonstrates the potential of gold nanoparticles as a promising alternative for localization-based super-resolution imaging. The study specifically investigates how different surface functionalizations and states (aggregated vs isolated) of gold nanoparticles impact their photoluminescence properties, including fluorescence intensity, lifetime, and blinking behavior. By leveraging the intrinsic photoluminescence of gold nanoparticles, their capability is demonstrated as probes to achieve super-resolution imaging of nano-sized structures, at a resolution down to 100 nm, without the need for conventional imaging buffers. These proof-of-concept applications, which include imaging of silica nanosized wrinkles and logos, reveal that gold nanoparticles exhibit superior photophysical properties compared to common organic fluorophores, offering a promising alternative for super-resolution imaging. This work paves the way for the application of super-resolution fluorescence microscopy in materials science where non-liquid environments often restrict the use of traditional probes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401411-sup-0001-SuppMat.pdf9.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Abbe, J. R. Soc. Interface 1881, 1, 388.
10.1111/j.1365-2818.1881.tb05909.x Google Scholar
- 2E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642.
- 3N. Gustafsson, S. Culley, G. Ashdown, D. M. Owen, P. M. Pereira, R. Henriques, Nat. Commun. 2016, 7, 12471.
- 4D. T. Burnette, P. Sengupta, Y. Dai, J. Lippincott-Schwartz, B. Kachar, Proc. Natl. Acad. Sci. USA 2011, 108, 21081.
- 5M. J. Rust, M. Bates, X. W. Zhuang, Nat. Methods 2006, 3, 793.
- 6T. Dertinger, M. Heilemann, R. Vogel, M. Sauer, S. Weiss, Angew. Chem., Int. Ed 2010, 49, 9441.
- 7S. T. Hess, T. P. K. Girirajan, M. D. Mason, Biophys. J 2006, 91, 4258.
- 8M. Ovesný, P. Křížek, J. Borkovec, Z. Svindrych, G. M. Hagen, Bioinformatics 2014, 30, 2389.
- 9G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, Nat. Methods 2011, 8, 1027.
- 10P. Bharadwaj, L. Novotny, Nano Lett 2011, 11, 2137.
- 11C. E. Aitken, R. A. Marshall, J. D. Puglisi, Biophys. J. 2008, 94, 1826.
- 12L. Nahidiazar, A. V. Agronskaia, J. Broertjes, B. Den Van Broek, K. Jalink, PLoS ONE 2016, 11, 0158884.
- 13M. Swoboda, J. Henig, H. M. Cheng, D. Brugger, D. Haltrich, N. Plumeré, M. Schlierf, ACS Nano 2012, 6, 6364.
- 14Y. Wang, G. Fruhwirth, E. Cai, T. Ng, P. R. Selvin, Nano Lett. 2013, 13, 5233.
- 15X. Yang, K. Zhanghao, H. Wang, Y. Liu, F. Wang, X. Zhang, K. Shi, J. Gao, D. Jin, P. Xi, ACS Photonics 2016, 3, 1611.
- 16O. Mandula, I. Š. Šestak, R. Heintzmann, C. K. I. Williams, Opt. Express 2014, 22, 24594.
- 17M. Heilemann, S. Van De Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem., Int. Ed. 2008, 47, 6172.
- 18G. H. Patterson, J. Lippincott-Schwartz, Science 2002, 297, 1873.
- 19M. Schwering, A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer, D.-P. Herten, Angew. Chem., Int. Ed. 2011, 50, 2940.
- 20A. Sharonov, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA 2006, 103, 18911.
- 21D. Wöll, C. Flors, Small Methods 2017, 1, 1700191.
- 22X. Liu, S.-Y. Chen, Q. Chen, X. Yao, M. Gelléri, S. Ritz, S. Kumar, C. Cremer, K. Landfester, K. Müllen, S. H. Parekh, A. Narita, M. Bonn, Angew. Chem., Int. Ed. 2020, 59, 496.
- 23O. Nevskyi, D. Sysoiev, J. Dreier, S. C. Stein, A. Oppermann, F. Lemken, T. Janke, J. Enderlein, I. Testa, T. Huhn, D. Wöll, Small 2018, 14, 1703333.
- 24A. Mooradian, Phys. Rev. Lett. 1969, 22, 185.
- 25C. D. Geddes, A. Parfenov, I. Gryczynski, J. R. Lakowicz, Chem. Phys. Lett. 2003, 380, 269.
- 26M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, M. Motamedi, Nano Lett 2009, 9, 287.
- 27N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
- 28C. Yang, Y. Wang, J.-L. Marty, X. Yang, Biosens. Bioelectron. 2011, 26, 2724.
- 29H. He, C. Xie, J. Ren, Anal. Chem. 2008, 80, 5951.
- 30M. Bates, B. Huang, X. Zhuang, Curr. Chem. Biol. 2008, 12, 505.
- 31W. Haiss, N. T. K. Thanh, J. Aveyard, D. G. Fernig, Anal. Chem. 2007, 79, 4215.
- 32P. Apell, R. Monreal, S. Lundqvist, Phys. Scr. 1988, 38, 174.
- 33E. Minutella, F. Schulz, H. Lange, J. Phys. Chem. Lett. 2017, 8, 4925.
- 34M. Yorulmaz, S. Nizzero, A. Hoggard, L.-Y. Wang, Y.-Y. Cai, M.-N. Su, W.-S. Chang, S. Link, Nano Lett. 2015, 15, 3041.
- 35S. Peng, J. M. McMahon, G. C. Schatz, S. K. Gray, Y. Sun, Proc. Natl. Acad. Sci. USA 2010, 107, 14530.
- 36W. He, J. Frueh, Z. Wu, Q. He, Langmuir 2016, 32, 3637.
- 37Z. Ebrahimpour, N. Mansour, Plasmonics 2018, 13, 1335.
- 38A. K. Tiwari, M. K. Gupta, R. Meena, P. C. Pandey, R. J. Narayan, Sensors 2024, 24, 2169.
- 39Z. Wu, R. Jin, Nano Letters 2010, 10, 2568.
- 40S. K. Ghosh, T. Pal, Chem. Rev. 2007, 107, 4797.
- 41P. K. Jain, W. Huang, M. A. El-sayed, Nano Lett. 2007, 7, 2080.
- 42G. V. Hartland, Chem. Rev. 2011, 111, 3858.
- 43H. Liao, J. H. Hafner, Chem. Mater. 2005, 17, 4636.
- 44Y. Zhang, J. Yu, D. J. S. Birch, Y. Chen, J. Biomed. Opt. 2010, 15, 020504.
- 45S. Suarasan, E. Licarete, S. Astilean, A.-M. Craciun, Colloids Surf. B: Biointerfaces 2018, 166, 135.
- 46K. Imura, T. Nagahara, H. Okamoto, J. Phys. Chem. B 2005, 109, 13214.
- 47D. Huang, C. P. Byers, L.-Y. Wang, A. Hoggard, B. Hoener, S. Dominguez-Medina, S. Chen, W.-S. Chang, C. F. Landes, S. Link, ACS Nano 2015, 9, 7072.
- 48M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, Chem. Phys. Lett. 2000, 317, 517.
- 49Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, J. Xie, J. Am. Chem. Soc. 2012, 134, 16662.
- 50A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Phys. Rev. A 2001, 64, 061802.
- 51B. Huang, W. Wang, M. Bates, X. Zhuang, Science 2008, 319, 810.
- 52J. Pettine, S. M. Meyer, F. Medeghini, C. J. Murphy, D. J. Nesbitt, ACS Nano 2021, 15, 1566.
- 53A. M. Steiner, M. Mayer, M. Seuss, S. Nikolov, K. D. Harris, A. Alexeev, C. Kuttner, T. A. F. König, A. Fery, ACS Nano 2017, 11, 8871.
- 54A. Schweikart, A. Fery, Microchim. Acta 2009, 165, 249.
- 55A. Sakdinawat, D. Attwood, Nat. Photonics 2010, 4, 840.
- 56F. J. Giessibl, Rev. Mod. Phys. 2003, 75, 949.
- 57R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature 1997, 389, 827.