Redox State-Driven Synthesis of Mesoporous and Microsphere Poly(phenylenediamine) for Transition Metal-Free and All-polymer Dual-Ion Battery
Alagar Ramar
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorRuben Foeng
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorJayaraman Divyavalli
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCorresponding Author
Fu-Ming Wang
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei, Taiwan
Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
E-mail: [email protected]
Search for more papers by this authorPei-Yun Kao
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCitra Deliana Dewi Sundari
Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia
Search for more papers by this authorChing-Kai Chang
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorLaurien Merinda
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorBai-Tai Liu
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorAlagar Ramar
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorRuben Foeng
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorJayaraman Divyavalli
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCorresponding Author
Fu-Ming Wang
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei, Taiwan
Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
E-mail: [email protected]
Search for more papers by this authorPei-Yun Kao
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorCitra Deliana Dewi Sundari
Department of Chemistry Education, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia
Search for more papers by this authorChing-Kai Chang
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorLaurien Merinda
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorBai-Tai Liu
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 106 Taiwan
Search for more papers by this authorAbstract
Dual-ion batteries (DIBs) are garnering immense attention for their capability to operate without the expensive elements required by lithium-ion batteries. Phenylenediamine serves as a versatile and sustainable resource, enabling the efficient preparation of both cathode and anode materials through precise molecular control and straightforward synthesis. The innovative asymmetrical DIBs based on amine-rich poly(phenylenediamine) cathodes and imine-rich poly(phenylenediamine) anodes enable oxidative and reductive states, providing a transition metal-free rechargeable battery. The polarity difference between amine and imine redox groups in the polymeric structure resulted in a high cell voltage of 2.2 V and a specific capacity of 100 mAh g−1, yielding an energy density of 220 Wh kg−1. The radical cation generated at the cathode found stability through aromatic resonance, while the radical anion formed at the anode is supported by the quinoid structure. The exciting insights in energy storage promise a revolution with rechargeable batteries using abundant elements, offering sustainable energy solutions.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401298-sup-0001-SuppMat.docx4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Energy Environ. Sci. 2014, 7, 14.
- 2J. A. Read, A. V. Cresce, M. H. Ervin, K. Xu, Energy Environ. Sci. 2014, 7, 617.
- 3Y. Sui, C. Liu, R. C. Masse, Z. G. Neale, M. Atif, M. AlSalhi, G. Cao, Energy Storage Mater. 2020, 25, 1.
- 4K. V. Kravchyk, M. V. Kovalenko, Adv. Energy Mater. 2019, 9, 1901749.
- 5Z. Hu, Q. Liu, K. Zhang, L. Zhou, L. Li, M. Chen, Z. Tao, Y.-M. Kang, L. Mai, S.-L. Chou, ACS Appl. Mater. Interfaces 2018, 10, 35978.
- 6S. Das, B. Pathak, ACS Appl. Energy Mater. 2023, 6, 6041.
- 7F. A. Obrezkov, A. F. Shestakov, V. F. Traven, K. J. Stevenson, P. A. Troshin, J. Mater. Chem. A 2019, 7, 11430.
- 8X. Ou, J. Li, X. Tong, G. Zhang, Y. Tang, ACS Appl. Energy Mater. 2020, 3, 10202.
- 9S. Guan, Q. Peng, X. Guo, Y. Zheng, E. Liao, S. Sun, K. Shin, B. Liu, X. Zhou, C. Zou, Chem. Eng. J. 2024, 793, 152864.
10.1016/j.cej.2024.152864 Google Scholar
- 10X. Ou, D. Gong, C. Han, Z. Liu, Y. Tang, Adv. Energy Mater. 2021, 11, 2102498.
- 11X. Tong, F. Zhang, G. Chen, X. Liu, L. Gu, Y. Tang, Adv. Energy Mater. 2018, 8, 1701967.
- 12Y. Wang, S. Wang, Y. Zhang, P.-K. Lee, D. Y. Yu, ACS Appl. Energy Mater. 2019, 2, 7512.
- 13X. Zhang, Y. Tang, F. Zhang, C.-S. Lee, Adv. Energy Mater. 2016, 6, 1502588.
- 14Y. Tong, Y. Wei, A. Song, Y. Ma, J. Yang, ChemSusChem 2024, 17, 202301468.
- 15B. A. Kahsay, F.-M. Wang, A. G. Hailu, X.-C. Wang, R. A. Yuwono, C.-H. Su, Electrochim. Acta 2021, 365, 137342.
- 16B. Atsbeha Kahsay, F.-M. Wang, A. G. Hailu, C.-H. Su, Polymers 2020, 12, 1109.
- 17A. Ramar, F.-M. Wang, J. Mater. Sci.: Mater. Electron. 2020, 31, 21832.
- 18B. A. Kahsay, A. Ramar, F.-M. Wang, N.-H. Yeh, P.-L. Lin, Z.-J. Luo, T.-S. Chan, C.-H. Su, J. Power Sources 2019, 428, 115.
- 19A. Ramar, F.-M. Wang, R. Foeng, R. Hsing, J. Power Sources 2023, 558, 232611.
- 20S. S. Manna, B. Pathak, J. Phys. Chem. C 2022, 126, 9264.
- 21X. Lei, Y. Zheng, F. Zhang, Y. Wang, Y. Tang, Energy Storage Mater. 2020, 30, 34.
- 22A. Yu, Q. Pan, M. Zhang, D. Xie, Y. Tang, Adv. Funct. Mater. 2020, 30, 2001440.
- 23F. Zhang, M. Wu, X. Wang, Q. Xiang, Y. Wu, J. Ding, Y. Sun, Chem. Eng. J. 2023, 457, 141335.
- 24L. Fan, Q. Liu, Z. Xu, B. Lu, ACS Energy Lett. 2017, 2, 1614.
- 25M. Yao, H. Senoh, T. Sakai, T. Kiyobayashi, J. Power Sources 2012, 202, 364.
- 26F. A. Obrezkov, V. Ramezankhani, I. Zhidkov, V. F. Traven, E. Z. Kurmaev, K. J. Stevenson, P. A. Troshin, J. Phys. Chem. Lett. 2019, 10, 5440.
- 27S. Dühnen, R. Nölle, J. Wrogemann, M. Winter, T. Placke, J. Electrochem. Soc. 2019, 166, A5474.
- 28G. Dai, Y. He, Z. Niu, P. He, C. Zhang, Y. Zhao, X. Zhang, H. Zhou, Angew. Chem., Int. Ed. 2019, 58, 9902.
- 29Z. Yu, L. Huang, Y. Wang, Z. Luo, L. Wang, B. Qin, M. Liang, Energy Storage Mater. 2024, 66, 103220.
- 30N. Casado, D. Mantione, D. Shanmukaraj, D. Mecerreyes, ChemSusChem 2020, 13, 2464.
- 31S. Sarkar, T. K. Dutta, B. P. Mandal, A. Patra, Chem. Commun. 2024, 60, 5010.
- 32H. Wu, Q. Wang, G. T. Fei, S. H. Xu, X. Guo, L. De Zhang, Nanoscale Res. Lett. 2018, 13, 1.
- 33I. Harada, Y. Furukawa, F. Ueda, Synth. Met. 1989, 29, 303.
- 34J. L. Olmedo-Martínez, B. I. Farías-Mancilla, A. Vega-Rios, E. A. Zaragoza-Contreras, J. Power Sources 2017, 366, 233.
- 35F. A. Obrezkov, E. S. Fedina, A. I. Somova, A. V. Akkuratov, K. J. Stevenson, ACS Appl. Energy Mater. 2021, 4, 11827.
- 36I. Amer, D. A. Young, H. C. Vosloo, Eur. Polym. J. 2013, 49, 3251.
- 37G. M. Neelgund, A. Oki, Polym. Int. 2011, 60, 1291.
- 38R. J. Abraham, M. Mobli, Magn. Reson. Chem. 2007, 45, 865.
- 39P. Charisiadis, V. G. Kontogianni, C. G. Tsiafoulis, A. G. Tzakos, M. Siskos, I. P. Gerothanassis, Molecules 2014, 19, 13643.
- 40H. Günther, NMR spectroscopy: basic principles, concepts and applications in chemistry, John Wiley & Sons, USA 2013.
- 41A. H. Premasiri, W. B. Euler, Macromol. Chem. Phys. 1995, 196, 3655.
- 42W. Wu, H.-Y. Shi, Z. Lin, X. Yang, C. Li, L. Lin, Y. Song, D. Guo, X.-X. Liu, X. Sun, Chem. Eng. J. 2021, 419, 129659.
- 43K. S. Sing, Pure Appl. Chem. 1985, 57, 603.
- 44R. Russo, J.-N. Chotard, G. Gachot, C. Frayret, G. Toussaint, P. Stevens, M. Becuwe, ACS Energy Lett. 2023, 8, 4597.
- 45F.-M. Wang, K. Wagari Guji, A. Ramar, L. Merinda, W.-C. Chien, ACS Sustainable Chem. Eng. 2021, 9, 12286.
- 46A. Ramar, M. Sakthivel, F.-M. Wang, K.-C. Ho, Carbon 2023, 213, 118223.
- 47L. Zhong, Y. Zhang, J. Li, L. Fang, C. Liu, X. Wang, Z. Zhang, D. Yu, ACS Nano 2023, 17, 18190.
- 48T. Sun, Q.-Q. Sun, Y. Yu, X.-B. Zhang, eScience 2021, 1, 186.
- 49K. Rudolf, L. Voigt, S. Muench, L. Frankenstein, J. Landsmann, U. S. Schubert, M. Winter, T. Placke, J. Kasnatscheew, ChemSusChem 2024, 17, 202400626.
- 50S. Jiao, X. Han, L. L. Jiang, X. Du, Z. Huang, S. Li, W. Wang, M. Wang, Y. Liu, W. L. Song, Angew. Chem., Int. Ed. 2024, 63, 202410110.
- 51X. Guo, P. Apostol, X. Zhou, J. Wang, X. Lin, D. Rambabu, M. Du, S. Er, A. Vlad, Energy Environ. Sci. 2024, 17, 173.
- 52M. Lee, J. Hong, B. Lee, K. Ku, S. Lee, C. B. Park, K. Kang, Green Chem. 2017, 19, 2980.