Self-Assembly Hybrid Manufacture of Nanoarrays for Metasurfaces
Bowen Yu
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Yuan Ma
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYujiao Wang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorLele Song
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuoxu Yu
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXuanhe Zhang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorQingyi Wang
School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 102616 P. R. China
Search for more papers by this authorZuobo Pang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYe Zhang
School of Automation, Beijing Information Science and Technology University, Beijing, 100192 P. R. China
Search for more papers by this authorQi Wang
State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorCorresponding Author
Jiadao Wang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorBowen Yu
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorCorresponding Author
Yuan Ma
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYujiao Wang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorLele Song
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorGuoxu Yu
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXuanhe Zhang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorQingyi Wang
School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 102616 P. R. China
Search for more papers by this authorZuobo Pang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorYe Zhang
School of Automation, Beijing Information Science and Technology University, Beijing, 100192 P. R. China
Search for more papers by this authorQi Wang
State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorCorresponding Author
Jiadao Wang
Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The development of metasurfaces necessitates the rapid fabrication of nanoarrays on diverse substrates at large scales, the preparation of patterned nanoarrays on both planar and curved surfaces, and even the creation of nanoarrays on prefabricated structures to form multiscale metastructures. However, conventional fabrication methods fall short of these rigorous requirements. In this work, a novel self-assembly hybrid manufacturing (SAHM) method is introduced for the rapid and scalable fabrication of shape-controllable nanoarrays on various rigid and flexible substrates. This method can be easily integrated with other fabrication techniques, such as lithography and screen printing, to produce patterned nanoarrays on both planar and non-developable surfaces. Utilizing the SAHM method, nanoarrays are fabricated on prefabricated micropillars to create multiscale pillar-nanoarray metastructures. Measurements indicate that these multiscale metastructures can manipulate electromagnetic waves across a range of wavelengths. Therefore, the SAHM method demonstrates the potential of multiscale structures as a new paradigm for the design and fabrication of metasurfaces.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401288-sup-0001-SuppMat.docx1 MB | Supporting Information |
smtd202401288-sup-0002-TableS1.xlsx17.2 KB | Supplemental Table 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro, Science 2011, 334, 333.
- 2E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, E. Hasman, Science 2016, 352, 1202.
- 3M. Khorasaninejad, F. Capasso, Science 2017, 358, eaam8100.
- 4M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, C. Yang, Nat. Photonics 2018, 12, 84.
- 5A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, A. Faraon, Nat. Photonics 2017, 11, 415.
- 6R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, P. Genevet, Adv. Mater. 2019, 31, 1805555.
- 7W. Zang, Q. Yuan, R. Chen, L. Li, T. Li, X. Zou, G. Zheng, Z. Chen, S. Wang, Z. Wang, Adv. Mater. 2020, 32, 1904935.
- 8Z. Li, P. Lin, Y. W. Huang, J. S. Park, W. T. Chen, Z. Shi, C. W. Qiu, J. X. Cheng, F. Capasso, Sci. Adv. 2021, 7, eabe4458.
- 9X. Zhang, X. Li, H. Zhou, Q. Wei, G. Geng, J. Li, X. Li, Y. Wang, L. Huang, Adv. Funct. Mater. 2022, 32, 2209460.
- 10R. Ahmed, H. Butt, Adv. Sci. 2021, 8, 2003394.
- 11N. Yu, F. Capasso, Nat. Mater. 2014, 13, 139.
- 12O. A. Abdelraouf, Z. Wang, H. Liu, Z. Dong, Q. Wang, M. Ye, X. R. Wang, Q. J. Wang, H. Liu, ACS Nano 2022, 16, 13339.
- 13H. X. Xu, G. Hu, Y. Wang, C. Wang, M. Wang, S. Wang, Y. Huang, P. Genevet, W. Huang, C. W. Qiu, Light: Sci. Appl. 2021, 10, 75.
- 14S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, A. Faraon, Nat. Commun. 2016, 7, 11618.
- 15K. Wu, P. Coquet, Q. J. Wang, P. Genevet, Nat. Commun. 2018, 9, 3494.
- 16X. Liu, P. Wang, C. Xiao, L. Fu, H. Zhou, T. Fan, D. Zhang, Adv. Mater. 2023, 35, 2302844.
- 17X. Feng, M. Pu, F. Zhang, R. Pan, S. Wang, J. Gong, R. Zhang, Y. Guo, X. Li, X. Ma, Adv. Funct. Mater. 2022, 32, 2205547.
- 18K. Kim, Z. M. Sherman, A. Cleri, W. J. Chang, J. P. Maria, T. M. Truskett, D. J. Milliron, Nano Lett. 2023, 23, 7633.
- 19E. Rahimi, R. Gordon, Adv. Opt. Mater. 2018, 6, 1800274.
- 20S. Gwo, C. Y. Wang, H. Y. Chen, M. H. Lin, L. Sun, X. Li, W. L. Chen, Y. M. Chang, H. Ahn, ACS Photonics 2016, 3, 1371.
- 21A. Y. Zhu, W. T. Chen, J. Sisler, K. M. Yousef, E. Lee, Y. W. Huang, C. W. Qiu, F. Capasso, Adv. Opt. Mater. 2019, 7, 1801144.
- 22S. Chen, W. Liu, Z. Li, H. Cheng, J. Tian, Adv. Mater. 2020, 32, 1805912.
- 23H. Liang, A. Martins, B.-H. V. Borges, J. Zhou, E. R. Martins, J. Li, T. F. Krauss, Optica 2019, 6, 1461.
- 24C. Jung, G. Kim, M. Jeong, J. Jang, Z. Dong, T. Badloe, J. K. Yang, J. Rho, Chem. Rev. 2021, 121, 13013.
- 25H. Li, G. M. Wang, G. Hu, T. Cai, C. W. Qiu, H. X. Xu, Adv. Opt. Mater. 2020, 8, 2000129.
- 26J. Zhu, Y. Yang, F. Wang, J. Lai, M. Li, Adv. Opt. Mater. 2023, 11, 2202416.
- 27L. Yang, H. Xu, H. Liu, D. Cheng, D. Cao, Small Methods 2019, 3, 1900113.
- 28Z. Shao, X. Zhang, J. Liu, X. Liu, C. Zhang, Small Methods 2023, 7, 2300701.
- 29R. Dong, Y. Li, M. Chen, P. Xiao, Y. Wu, K. Zhou, Z. Zhao, B. Z. Tang, Small Methods 2022, 6, 2101247.
- 30D. G. Yu, W. Gong, J. Zhou, Y. Liu, Y. Zhu, X. Lu, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2024, 16, e1964.
- 31L. Xu, Q. Li, H. Wang, H. Liu, D. G. Yu, S.-W. A. Bligh, X. Lu, Chem. Eng. J. 2024, 492, 152359.
- 32P. Zhao, K. Zhou, Y. Xia, C. Qian, D. G. Yu, Y. Xie, Y. Liao, Adv. Fiber Mater. 2024, 6, 1053.
- 33V. Reisecker, D. Kuhness, G. Haberfehlner, M. Brugger-Hatzl, R. Winkler, A. Weitzer, D. Loibner, M. Dienstleder, G. Kothleitner, H. Plank, Adv. Funct. Mater. 2024, 34, 2310110.
- 34X. Zhu, J. Engelberg, S. Remennik, B. Zhou, J. N. Pedersen, P. Uhd Jepsen, U. Levy, A. Kristensen, Nano Lett. 2022, 22, 2786.
- 35E. Albisetti, A. Calò, A. Zanut, X. Zheng, G. M. de Peppo, E. Riedo, Nat. Rev. Methods Primers 2022, 2, 32.
- 36T. Das Gupta, L. Martin-Monier, W. Yan, A. Le Bris, T. Nguyen-Dang, A. G. Page, K. T. Ho, F. Yesilköy, H. Altug, Y. Qu, Nat. Nanotechnol. 2019, 14, 320.
- 37L. S. McCarty, A. Winkleman, G. M. Whitesides, Angew. Chem., Int. Ed. 2007, 46, 206.
- 38S. Sarkar, V. Gupta, T. Tsuda, J. Gour, A. Singh, O. Aftenieva, A. M. Steiner, M. Hoffmann, S. Kumar, A. Fery, Adv. Funct. Mater. 2021, 31, 2011099.
- 39D. Schletz, J. Schultz, P. L. Potapov, A. M. Steiner, J. Krehl, T. A. König, M. Mayer, A. Lubk, A. Fery, Adv. Opt. Mater. 2021, 9, 2001983.
- 40G. Cossio, E. T. Yu, Nano. lett. 2020, 20, 5090.
- 41M. Mayer, P. L. Potapov, D. Pohl, A. M. Steiner, J. Schultz, B. Rellinghaus, A. Lubk, T. A. König, A. Fery, Nano Lett. 2019, 19, 3854.
- 42J. Y. Kim, H. Kim, B. H. Kim, T. Chang, J. Lim, H. M. Jin, J. H. Mun, Y. J. Choi, K. Chung, J. Shin, Nat. Commun. 2016, 7, 12911.
- 43A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, G. M. Whitesides, ACS Nano 2014, 8, 11061.
- 44K. Wang, S. H. Park, J. Zhu, J. K. Kim, L. Zhang, G. R. Yi, Adv. Funct. Mater. 2021, 31, 2008246.
- 45P. T. Probst, M. Mayer, V. Gupta, A. M. Steiner, Z. Zhou, G. K. Auernhammer, T. A. König, A. Fery, Nat. Mater. 2021, 20, 1024.
- 46S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, T. A. König, ACS Appl. Mater. Interfaces 2019, 11, 13752.
- 47V. Gupta, S. Sarkar, O. Aftenieva, T. Tsuda, L. Kumar, D. Schletz, J. Schultz, A. Kiriy, A. Fery, N. Vogel, Adv. Funct. Mater. 2021, 31, 2105054.
- 48M. Toma, G. Loget, R. M. Corn, Nano Lett. 2013, 13, 6164.
- 49B. Ai, H. Möhwald, D. Wang, G. Zhang, Adv. Mater. Interfaces 2017, 4, 1600271.
- 50X. Li, L. Chen, D. Weng, C. Chen, Z. Li, J. Wang, Chem. Eng. J. 2022, 427, 130658.
- 51X. Li, L. Chen, D. Feng, D. Weng, J. Wang, Cell Rep. Phys. Sci. 2020, 1, 100220.
- 52X. Li, L. Chen, Y. Ma, D. Weng, Z. Li, L. Song, X. Zhang, G. Yu, J. Wang, Adv. Funct. Mater. 2022, 32, 2205462.
- 53X. Li, Y. Ma, Y. Xue, X. Zhang, L. Lv, Q. Quan, Y. Chen, G. Yu, Z. Liang, X. Zhang, ACS Nano 2022, 17, 2101.
- 54Y. Wang, C. Zhao, J. Wang, X. Luo, L. Xie, S. Zhan, J. Kim, X. Wang, X. Liu, Y. Ying, Sci. Adv. 2021, 7, eabe4553.
- 55J. Cai, C. Zhang, W. D. Li, Adv. Opt. Mater. 2021, 9, 2001401.
- 56J. Li, L. Zhang, M. Zhang, H. Su, I. L. Li, S. Ruan, H. Liang, Adv. Opt. Mater. 2020, 8, 2000068.
- 57C. M. Watts, X. Liu, W. J. Padilla, Adv. Mater. 2012, 24, OP98.
- 58M. L. Brongersma, Y. Cui, S. Fan, Nat. Mater. 2014, 13, 451.
- 59Y. Hu, Y. Cai, W. Wei, L. Li, H. Wang, S. Wang, P. Yang, H. Jia, H. Duan, Adv. Opt. Mater. 2024, 12, 2302934.
- 60H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, J. Micromech. Microeng. 1996, 6, 14.
- 61Y. Zhou, S. Wang, J. Yin, J. Wang, F. Manshaii, X. Xiao, T. Zhang, H. Bao, S. Jiang, J. Chen, ACS Nano 2024, 18, 2685.
- 62S. Huang, Y. Wan, X. Ming, J. Zhou, M. Zhou, H. Chen, Q. Zhang, S. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 41112.
- 63T. Ozel, B. A. Zhang, R. Gao, R. W. Day, C. M. Lieber, D. G. Nocera, Nano Lett. 2017, 17, 4502.
- 64M. Capone, Diségno 2018, 1, 53.
- 65C. Huang, Y. Luo, Y. Zhao, X. Ma, Z. Yan, Z. Liu, C. Sheng, S. Zhu, H. Liu, Nat. Photonics 2024, 18, 471.
- 66A. I. Kuznetsov, M. L. Brongersma, J. Yao, M. K. Chen, U. Levy, D. P. Tsai, N. I. Zheludev, A. Faraon, A. Arbabi, N. Yu, ACS Photonics 2024, 11, 816.
- 67L. Tang, K. H. Tsui, S. F. Leung, Q. Zhang, M. Kam, H. P. Wang, J. H. He, Z. Fan, J. Semicond. 2019, 40, 042601.
- 68J. Cai, L. Qi, Mater. Horiz. 2015, 2, 37.
- 69Z. Wang, H. Ding, D. Liu, C. Xu, B. Li, S. Niu, J. Li, L. Liu, J. Zhao, J. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 23103.
- 70N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, Phys. Rev. Lett. 2008, 100, 207402.
- 71P. Gao, J. He, S. Zhou, X. Yang, S. Li, J. Sheng, D. Wang, T. Yu, J. Ye, Y. Cui, Nano Lett. 2015, 15, 4591.
- 72R. Borah, K. R. Ag, A. C. Minja, S. W. Verbruggen, Small Methods 2023, 7, 2201536.
- 73F. Laible, A. Horneber, M. Fleischer, Adv. Opt. Mater. 2021, 9, 2100326.
- 74J. S. Kahn, O. Gang, Angew. Chem. 2022, 134, e202105678.
10.1002/ange.202105678 Google Scholar
- 75M. Xie, Y. Hu, J. Yin, Z. Zhao, J. Chen, J. Chao, Research 2022, 2022, 9840131.
- 76J. Ye, R. Weichelt, U. Kemper, V. Gupta, T. A. König, A. Eychmüller, R. Seidel, Small 2020, 16, 2003662.
- 77C. Hanske, G. González-Rubio, C. Hamon, P. Formentín, E. Modin, A. Chuvilin, A. Guerrero-Martinez, L. F. Marsal, L. M. Liz-Marzán, J. Phys. Chem. C. 2017, 121, 10899.
- 78V. Flauraud, M. Mastrangeli, G. D. Bernasconi, J. Butet, D. T. Alexander, E. Shahrabi, O. J. Martin, J. Brugger, Nat. Nanotechnol. 2017, 12, 73.
- 79S. Singamaneni, V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, J. Mater. Chem. 2011, 21, 16819.
- 80G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149.