Nucleus-Spike 3D Hierarchical Superstructures via a Lecithin-Mediated Biomineralization Approach
Jiaxin Rui
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorTingting Wu
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorZhiwei Zhang
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorWei Lu
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorXuzhi Shi
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorCorresponding Author
Ying Liu
School of Intelligent Manufacturing and Electronic, Engineering Wenzhou University of Technology, Wenzhou, 325025 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaolin Han
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorMeng Dang
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorCorresponding Author
Xiaodan Su
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhaogang Teng
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiaxin Rui
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorTingting Wu
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorZhiwei Zhang
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorWei Lu
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorXuzhi Shi
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorCorresponding Author
Ying Liu
School of Intelligent Manufacturing and Electronic, Engineering Wenzhou University of Technology, Wenzhou, 325025 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorXiaolin Han
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorMeng Dang
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
Search for more papers by this authorCorresponding Author
Xiaodan Su
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhaogang Teng
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023 P.R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
3D hierarchical superstructures (3DHSs) are key products of nature's evolution and have raised wide interest. However, the preparation of 3DHSs composed of building blocks with different structures is rarely reported, and regulating their structural parameters is challenging. Herein, a simple lecithin-mediated biomineralization approach is reported for the first time to prepare gold 3DHSs composed of 0D nucleus and 1D protruding dendritic spikes. It is demonstrated that a hydrophobic complex by coordination of disulfiram (DSF) with a share of chloroauric acid is the key to forming the 3DHSs. Under the lecithin mediation, chloroauric acid is first reduced to form the 0D nucleus, followed by the spike growth through the reduction of the hydrophobic complex. The prepared 3DHSs possess well-defined morphology with a spike length of ≈95 nm. Notably, the hierarchical spike density is systematically manipulated from 38.9% to 74.3% by controlling DSF concentrations. Moreover, the spike diameter is regulated from 9.2 to 12.9 nm by selecting different lecithin concentrations to tune the biomineralization process. Finite-difference time-domain (FDTD) simulations reveal that the spikes form “hot spots”. The dense spike structure endows the 3DHSs with sound performance in surface-enhanced Raman scattering (SERS) applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202401251-sup-0001-SuppMat.docx26.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. Huang, M. Shishehbor, N. Guarin-Zapata, N. D. Kirchhofer, J. Li, L. Cruz, T. Wang, S. Bhowmick, D. Stauffer, P. Manimunda, K. N. Bozhilov, R. Caldwell, P. Zavattieri, D. Kisailus, Nat. Mater. 2020, 19, 1236; b) U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Nat. Mater. 2015, 14, 23; c) D. Nepal, S. Kang, K. M. Adstedt, K. Kanhaiya, M. R. Bockstaller, L. C. Brinson, M. J. Buehler, P. V. Coveney, K. Dayal, J. A. El-Awady, L. C. Henderson, D. L. Kaplan, S. Keten, N. A. Kotov, G. C. Schatz, S. Vignolini, F. Vollrath, Y. Wang, B. I. Yakobson, V. V. Tsukruk, H. Heinz, Nat. Mater. 2022, 22, 18; d) P. Gilbert, K. D. Bergmann, N. Boekelheide, S. Tambutte, T. Mass, F. Marin, J. F. Adkins, J. Erez, B. Gilbert, V. Knutson, M. Cantine, J. O. Hernandez, A. H. Knoll, Sci. Adv. 2022, 8, eabl9653.
- 2a) L. Jin, H. Xu, C. Chen, H. Shang, Y. Wang, C. Wang, Y. Du, ACS Appl. Mater. Interfaces 2019, 11, 42123; b) Y. Chen, M. R. Younis, G. He, Z. Zheng, Y. Wang, K. Xue, J. Sun, K. Liu, P. Huang, X. Wang, Adv. Healthcare Mater. 2023, 12, e2300456; c) G. Tan, J. Zhang, L. Zheng, D. Jiao, Z. Liu, Z. Zhang, R. O. Ritchie, Adv. Mater. 2019, 31, 1904603; d) X. Y. Huang, K. Chen, W. Xie, Y. Li, F. Yang, Y. Deng, J. Li, F. Jiang, Y. Shu, L. Wu, W. F. Xie, Y. Deng, Adv. Funct. Mater. 2023, 33, 2304718; e) X. Jiao, X. Liu, B. Wang, G. Wang, X. Wang, H. Wang, J. Mater. Chem. A 2020, 8, 2047; f) D. Kim, S. J. Kim, J. Jeong, S. Han, H. Kim, S. Lee, I. Choi, J. Hong, J. O. Jin, J. B. Lee, ACS Nano 2024, 18, 1744.
- 3a) F. Qi, K. J. Jeong, J. Gong, Z. Tang, Acc. Chem. Res. 2022, 55, 2425;
b) B. Jiang, J. Zhang, K. Yu, Z. Jia, H. Long, N. He, Y. Zhang, Y. Zou, Z. Han, Y. Li, L. Ma, Adv. Mater. 2024, 36, 2404446;
c) M. Taplick, C. Ruhmlieb, T. Kipp, A. Mews, Nano Lett. 2023, 23, 1313;
d) F. Nosheen, Z. Zhang, G. Xiang, B. Xu, Y. Yang, F. Saleem, X. Xu, J. Zhang, X. Wang, Nano Res. 2014, 8, 832.
10.1007/s12274-014-0565-1 Google Scholar
- 4M. A. Moradi, E. D. Eren, M. Chiappini, S. Rzadkiewicz, M. Goudzwaard, M. M. J. van Rijt, A. D. A. Keizer, A. F. Routh, M. Dijkstra, G. de With, N. Sommerdijk, H. Friedrich, J. P. Patterson, Nat. Mater. 2021, 20, 541.
- 5a) Y. Ren, W. Xie, Y. Li, J. Ma, J. Li, Y. Liu, Y. Zou, Y. Deng, ACS Cent. Sci. 2021, 7, 1885; b) Y. Ren, Y. Zou, Y. Liu, X. Zhou, J. Ma, D. Zhao, G. Wei, Y. Ai, S. Xi, Y. Deng, Nat. Mater. 2020, 19, 203.
- 6Z. Xu, X. Zhuang, C. Yang, J. Cao, Z. Yao, Y. Tang, J. Jiang, D. Wu, X. Feng, Adv. Mater. 2016, 28, 1981.
- 7a) Q. An, D. Li, W. Liao, T. Liu, D. Joralmon, X. Li, J. Zhao, Adv. Mater. 2023, 35, 2300659; b) W. Guo, Y. Liu, Y. Sun, Y. Wang, W. Qin, B. Zhao, Z. Liang, L. Jiang, Adv. Funct. Mater. 2021, 31, 2100768; c) A. Frank, C. Hils, M. Weber, K. Kreger, H. Schmalz, H. W. Schmidt, Angew. Chem., Int. Ed. 2021, 60, 21767; d) H. Niu, H. Li, Y. Li, W. Yue, S. Gao, X. Wei, G. Shen, Nano Energy 2023, 107, 108144.
- 8a) R. Hao, Y. Deng, J. Fang, D. Zhao, Nano Lett. 2024, 24, 4554; b) A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, J. R. Greer, Nat. Commun. 2018, 9, 593.
- 9a) J. H. Kim, K. I. Min, Adv. Funct. Mater. 2022, 33, 2210196; b) Q. Tang, B. Wan, X. Yuan, A. D. Muscente, S. Xiao, Nat. Commun. 2019, 10, 3348; c) A. Arnold, E. Dennison, C. S. Kovacs, M. Mannstadt, R. Rizzoli, M. L. Brandi, B. Clarke, R. V. Thakker, Nat Rev Endocrinol 2021, 17, 261; d) D. Athanasiadou, K. M. M. Carneiro, Nat. Rev. Chem. 2021, 5, 93.
- 10F. Bot, D. Cossuta, J. A. O'Mahony, Trends Food Sci. Technol. 2021, 111, 261.
- 11S. Ye, A. P. Brown, A. C. Stammers, N. H. Thomson, J. Wen, L. Roach, R. J. Bushby, P. L. Coletta, K. Critchley, S. D. Connell, A. F. Markham, R. Brydson, S. D. Evans, Adv. Sci. 2019, 6, 1900911.
- 12a) D. Ray, H. C. Wang, J. Kim, C. Santschi, O. J. F. Martin, Adv. Mater. 2022, 34, 2108225; b) M. Jash, A. Jana, A. K. Poonia, E. Khatun, P. Chakraborty, A. Nagar, T. Ahuja, K. V. Adarsh, T. Pradeep, Chem. Mater. 2022, 35, 313.
- 13A. S. Nugraha, O. Guselnikova, J. Henzie, J. Na, M. S. A. Hossain, Ö. Dag, A. E. Rowan, Y. Yamauchi, Chem. Mater. 2022, 34, 7256.
- 14J. Rui, M. Chen, T. Wu, X. Shi, W. Lu, M. Dang, X. Han, N. Wang, Y. Wang, X. Su, Z. Teng, Small Struct. 2024, 5, 2400072.
- 15L. Wang, X. Chen, Z. Sun, Y. Chai, Can. J. Chem. Eng. 2008, 85, 598.
- 16X. Han, M. Dang, H. Gao, W. Lu, J. Tao, J. Wu, D. Chen, J. Zhao, X. Su, Z. Teng, J. Taiwan Inst. Chem. Eng. 2023, 143, 104648.
- 17H. Hilal, Q. Zhao, J. Kim, S. Lee, M. Haddadnezhad, S. Yoo, S. Lee, W. Park, W. Park, J. Lee, J. W. Lee, I. Jung, S. Park, Nat. Commun. 2022, 13, 4813.