Observation of a Novel Interligand Chiral Arrangement in Metal Nanoclusters and Its Implication in Resisting Racemization
Peisen Zheng
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorShuang Wang
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorHuan Zhao
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorQinzhen Li
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorSha Yang
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorCorresponding Author
Jinsong Chai
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Manzhou Zhu
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorPeisen Zheng
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorShuang Wang
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorHuan Zhao
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorQinzhen Li
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorSha Yang
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
Search for more papers by this authorCorresponding Author
Jinsong Chai
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Manzhou Zhu
Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Given the scientifically significant importance of studying the chirality of clusters, the challenges of synthesizing chiral clusters are progressively surmounted. However, the racemization of clusters is unavoidable, and it limits the development of their follow-on chiral applications. To address this issue, chiral thiols are synthesized and used for the construction of high-stability optically pure nanoclusters in this work. As a result, a pair of chiral nanoclusters, Au24Cd2(SR)14, is obtained with excellent stability under thermal, acidic, alkaline, oxidizing, and reducing environments. Unexpectedly, it can also maintain its optical activity with the introduction of Cu2+ ions and chiral ligand with opposite configuration. Structural relationship analysis indicates that the excellent stability is mainly dependent on the hierarchical assembly of the nanoclusters, in which the chiral assembly of chiral ligands (a new pattern of chiral arrangement of intramolecular ligands on the surface of clusters) may be a key factor.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401215-sup-0001-SuppMat.docx7.7 MB | Supporting Information |
smtd202401215-sup-0002-SuppMat.zip2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. D. Watson, F. H. C. Crick, Nature 1953, 171, 737.
- 2L. D. Barron, Nature 2000, 405, 895.
- 3K. Taniguchi, R. Maeda, T. Ando, T. Okumura, N. Nakazawa, R. Hatori, M. Nakamura, S. Hozumi, H. Fujiwara, K. Matsuno, Science 2011, 333, 339.
- 4B. A. Mcguire, P. B. Carroll, R. A. Loomis, I. A. Finneran, P. R. Jewwll, A. J. Remijan, G. A. Blake, Science 2016, 352, 1449.
- 5D. P. Glavin, A. S. Burton, J. E. Elsila, J. C. Aponte, J. P. Dworkin, Chem. Rev. 2020, 120, 4660.
- 6G. F. Joyce, G. M. Visser, C. A. A. van Boeckel, J. H. van Boom, L. E. Orgel, J. van Westrenen, Nature 1984, 310, 602.
- 7H. Jędrzejewska, M. Wierzbicki, P. Cmoch, K. Rissanen, A. Szumna, Angew. Chem., Int. Ed. 2014, 53, 13760.
- 8K. Soai, T. Shibata, H. Morioka, K. Choji, Nature 1995, 378, 767.
- 9S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281.
- 10J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, N. A. Kotov, Nat. Mater. 2015, 14, 66.
- 11G. M. Vanacore, G. Berruto, I. Madan, E. Pomarico, P. Biagioni, R. J. Lamb, D. McGrouther, O. Reinhardt, I. Kaminer, B. Barwick, H. Larocque, V. Grillo, E. Karimi, F. J. García de Abajo, F. Carbone, Nat. Mater. 2019, 18, 573.
- 12M. Huang, L. Zhang, T. Pan, S. Luo, Science 2022, 375, 869.
- 13S. P. Simeonov, J. P. M. Nunes, K. Guerra, V. B. Kurteva, C. A. M. Afonso, Chem. Rev. 2016, 116, 5744.
- 14Z. Wang, W. Xu, L. Liu, T. F. Zhu, Nat. Chem. 2016, 8, 698.
- 15N. Hartrampf, N. Winter, G. Pupo, B. M. Stoltz, D. Trauner, J. Am. Chem. Soc. 2018, 140, 8675.
- 16F. García, R. Gómez, L. Sánchez, Chem. Soc. Rev. 2023, 52, 7524.
- 17M. L. Ślęczkowski, M. F. J. Mabesoone, P. Ślęczkowski, A. R. A. Palmans, E. W. Meijer, Nat. Chem. 2021, 13, 200.
- 18I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208.
- 19Q. Li, B. Huang, S. Yang, H. Zhang, J. Chai, Y. Pei, M. Zhu, J. Am. Chem. Soc. 2021, 143, 15224.
- 20R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.
- 21S. Knoppe, T. Bürgi, Acc. Chem. Res. 2014, 47, 1318.
- 22Y. Li, T. Higaki, X. Du, R. Jin, Adv. Mater. 2020, 32, 1905488.
- 23X. Wang, B. Yin, L. Jiang, C. Yang, Y. Liu, G. Zou, S. Chen, M. Zhu, Science 2023, 381, 784.
- 24Y. Li, M. Zhou, Y. Song, T. Higaki, H. Wang, R. Jin, Nature 2021, 594, 380.
- 25Q. Li, Y. Tan, B. Huang, S. Yang, J. Chai, X. Wang, Y. Pei, M. Zhu, J. Am. Chem. Soc. 2023, 145, 15859.
- 26J. Chai, S. Yang, Y. Lv, H. Chong, H. Yu, M. Zhu, Angew. Chem., Int. Ed. 2019, 58, 15671.
- 27J.-Q. Wang, R.-L. He, W.-D. Liu, Q.-Y. Feng, Y.-E. Zhang, C.-Y. Liu, J.-X. Ge, Q.-M. Wang, J. Am. Chem. Soc. 2023, 145, 12255.
- 28I. O. Koshevoy, Y.-C. Chang, A. J. Karttunen, M. Haukka, T. Pakkanen, P.-T. Chou, J. Am. Chem. Soc. 2012, 134, 6564.
- 29X.-F. Jiang, F. K.-W. Hau, Q.-F. Sun, S.-Y. Yu, V. W.-W. Yam, J. Am. Chem. Soc. 2014, 136, 10921.
- 30M. Zhu, H. Qian, X. Meng, S. Jin, Z. Wu, R. Jin, Nano Lett. 2011, 11, 3963.
- 31H. Yang, J. Yan, Y. Wang, G. Deng, H. Su, X. Zhao, C. Xu, B. K. Teo, N. Zheng, J. Am. Chem. Soc. 2017, 139, 16113.
- 32M.-M. Zhang, X.-Y. Dong, Z.-Y. Wang, X.-M. Luo, J.-H. Huang, S.-Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2021, 143, 6048.
- 33G. Deng, S. Malola, P. Yuan, X. Liu, B. K. Teo, H. Häkkinen, N. Zheng, Angew. Chem., Int. Ed. 2021, 60, 12897.
- 34S. Li, X.-S. Du, B. Li, J.-Y. Wang, G.-P. Li, G.-G. Gao, S.-Q. Zang, J. Am. Chem. Soc. 2018, 140, 594.
- 35H. Shen, Z. Xu, L. Wang, Y.-Z. Han, X. Liu, S. Malola, B. K. Teo, H. Häkkinen, N. Zheng, Angew. Chem., Int. Ed. 2021, 60, 22411.
- 36Z. Han, X.-Y. Dong, P. Luo, S. Li, Z.-Y. Wang, S.-Q. Zang, T. C. W. Mak, Sci. Adv. 2020, 6, eaay0107.
- 37J. Yan, H. Su, H. Yang, C. Hu, S. Malola, S. Lin, B. K. Teo, H. Häkkinen, N. Zheng, J. Am. Chem. Soc. 2016, 138, 12751.
- 38C. Liu, Y. Zhao, T. Zhang, C.-B. Tao, W. Fei, S. Zhang, M.-B. Li, Nat. Commun. 2023, 14, 3730.
- 39W.-D. Liu, J.-Q. Wang, S.-F. Yuan, X. Chen, Q.-M. Wang, Angew. Chem., Int. Ed. 2021, 60, 11430.
- 40M.-M. Zhang, K.-K. Gao, X.-Y. Dong, Y. Si, T. Jia, Z. Han, S.-Q. Zang, T. C. W. Mak, J. Am. Chem. Soc. 2023, 145, 22310.
- 41X.-K. Wan, S.-F. Yan, Z.-W. Lin, Q.-M. Wang, Angew. Chem., Int. Ed. 2014, 53, 2923.
- 42C. Zeng, T. Li, A. Das, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2013, 135, 10011.
- 43H. Qian, W. T. Eckenhoff, Y. Zhu, T. Pintauer, R. Jin, J. Am. Chem. Soc. 2010, 132, 8280.
- 44C. Zeng, Y. Chen, K. Kirschbaum, K. J. Lambright, R. Jin, Science 2016, 354, 1580.
- 45C. Zeng, Y. Chen, K. Kirschbaum, K. Appavoo, M. Y. Sfeir, R. Jin, Sci. Adv. 2015, 1, 1500045.
- 46G. Dong, Z. Pan, B. Han, Y. Tao, X. Chen, G.-G. Luo, P. Sun, C. Sun, D. Sun, Angew. Chem., Int. Ed. 2023, 62, 202302595.
- 47S. Knoppe, I. Dolamic, T. Bürgi, J. Am. Chem. Soc. 2012, 134, 13114.
- 48N. Barrabés, B. Zhang, T. Bürgi, J. Am. Chem. Soc. 2014, 136, 14361.
- 49J.-J. Li, Z. Liu, Z.-J. Guan, X.-S. Han, W.-Q. Shi, Q.-M. Wang, J. Am. Chem. Soc. 2022, 144, 690.
- 50L.-L. Hou, F. Bigdeli, X. Cheng, L.-X. Wang, J.-W. Zhang, K.-G. Liu, A. Morsali, Inorg. Chem. 2022, 61, 16693.
- 51N. Mammen, S. Malola, K. Honkala, H. Häkkinen, Nanoscale 2020, 12, 23859.
- 52M. P. Maman, E. N. Nahan, G. Suresh, A. Das, A. S. Nair, B. Pathak, S. Mandal, Nanoscale 2023, 15, 13102.
- 53H. Li, P. Wang, C. Zhu, W. Zhang, M. Zhou, S. Zhang, C. Zhang, Y. Yun, X. Kang, Y. Pei, M. Zhu, J. Am. Chem. Soc. 2022, 144, 23205.
- 54J. Chai, S. Yang, T. Chen, Q. Li, S. Wang, M. Zhu, Inorg. Chem. 2021, 60, 9050.
- 55Q. Li, S. Yang, J. Chai, H. Zhang, M. Zhu, Nanoscale 2022, 14, 15804.