Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons
Weili Cui
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorWendi Zhang
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 P. R. China
Search for more papers by this authorKunpeng Tang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYingzhi Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Kecheng Cao
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lei Shi
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGuowei Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorWeili Cui
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorWendi Zhang
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 P. R. China
Search for more papers by this authorKunpeng Tang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorYingzhi Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Kecheng Cao
School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lei Shi
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGuowei Yang
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorAbstract
Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401168-sup-0001-SuppMat.docx801.3 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347.
- 2V. Barone, O. Hod, G. E. Scuseria, Nano Lett. 2006, 6, 2748.
- 3H. Shen, Y. Shi, X. Wang, Synth. Met. 2015, 210, 109.
- 4H.-C. Chung, C.-P. Chang, C.-Y. Lin, M.-F. Lin, Phys. Chem. Chem. Phys. 2016, 18, 7573.
- 5P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel, Nature 2016, 531, 489.
- 6R. M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P. L. Levesque, K. M. McElhinny, G. J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M. G. Lagally, P. G. Evans, P. Desjardins, R. Martel, M. C. Hersam, N. P. Guisinger, M. S. Arnold, Nat. Commun. 2015, 6, 8006.
- 7J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015, 137, 6097.
- 8P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P. S. Weiss, N. Asao, T. Hitosugi, ACS Nano 2014, 8, 9181.
- 9J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat. Nanotechnol. 2014, 9, 896.
- 10G. D. Nguyen, H.-Z. Tsai, A. A. Omrani, T. Marangoni, M. Wu, D. J. Rizzo, G. F. Rodgers, R. R. Cloke, R. A. Durr, Y. Sakai, F. Liou, A. S. Aikawa, J. R. Chelikowsky, S. G. Louie, F. R. Fischer, M. F. Crommie, Nat. Nanotechnol. 2017, 12, 1077.
- 11V. Saraswat, R. M. Jacobberger, M. S. Arnold, ACS Nano 2021, 15, 3674.
- 12S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J. H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias, Phys. Rev. Lett. 2012, 108, 216801.
- 13P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C. A. Pignedoli, R. Fasel, ACS Nano 2012, 6, 6930.
- 14J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, I. Swart, Nat. Commun. 2013, 4, 2023.
- 15Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97, 216803.
- 16P. B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D. G. de Oteyza, C. Chen, F. R. Fischer, M. F. Crommie, J. Bokor, Appl. Phys. Lett. 2013, 103, 253114.
- 17J. P. Llinas, A. Fairbrother, G. Borin Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. Müllen, F. Fischer, A. Zettl, P. Ruffieux, E. Yablonovitch, M. Crommie, R. Fasel, J. Bokor, Nat. Commun. 2017, 8, 633.
- 18A. Kimouche, M. M. Ervasti, R. Drost, S. Halonen, A. Harju, P. M. Joensuu, J. Sainio, P. Liljeroth, Nat. Commun. 2015, 6, 10177.
- 19H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi, J. Am. Chem. Soc. 2015, 137, 4022.
- 20L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechnol. 2007, 2, 687.
- 21J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 2010, 466, 470.
- 22K. Sun, X. Li, L. Chen, H. Zhang, L. Chi, J. Phys. Chem. C 2020, 124, 11422.
- 23X. Wang, W. Cui, M. Chen, Q. Xu, Mater. Lett. 2017, 201, 129.
- 24A. Berdonces-Layunta, F. Schulz, F. Aguilar-Galindo, J. Lawrence, M. S. G. Mohammed, M. Muntwiler, J. Lobo-Checa, P. Liljeroth, D. G. de Oteyza, ACS Nano 2021, 15, 16552.
- 25H. Sakaguchi, Y. Kawagoe, Y. Hirano, T. Iruka, M. Yano, T. Nakae, Adv. Mater. 2014, 26, 4134.
- 26K. Sun, P. Ji, H. Zhang, K. Niu, L. Li, A. Chen, Q. Li, K. Müllen, L. Chi, Faraday Discuss. 2017, 204, 297.
- 27Z. Chen, H. I. Wang, N. Bilbao, J. Teyssandier, T. Prechtl, N. Cavani, A. Tries, R. Biagi, V. De Renzi, X. Feng, M. Kläui, S. De Feyter, M. Bonn, A. Narita, K. Müllen, J. Am. Chem. Soc. 2017, 139, 9483.
- 28J. Wu, L. Gherghel, M. D. Watson, J. Li, Z. Wang, C. D. Simpson, U. Kolb, K. Müllen, Macromolecules 2003, 36, 7082.
- 29X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Räder, K. Müllen, J. Am. Chem. Soc. 2008, 130, 4216.
- 30L. Dössel, L. Gherghel, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2011, 50, 2540.
- 31M. G. Schwab, A. Narita, Y. Hernandez, T. Balandina, K. S. Mali, S. De Feyter, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 18169.
- 32K. Sun, P. Ji, J. Zhang, J. Wang, X. Li, X. Xu, H. Zhang, L. Chi, Small 2019, 15, 1804526.
- 33F. Simon, C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zólyomi, J. Kürti, P. M. Singer, H. Alloul, Phys. Rev. Lett. 2005, 95, 017401.
- 34H. Kuzmany, L. Shi, J. Kürti, J. Koltai, A. Chuvilin, T. Saito, T. Pichler, Phys. status solidi – Rapid Res. Lett. 2017, 11, 1700158.
- 35L. Shi, R. Senga, K. Suenaga, H. Kataura, T. Saito, A. P. Paz, A. Rubio, P. Ayala, T. Pichler, Nano Lett. 2021, 21, 1096.
- 36W. Cui, L. Shi, K. Cao, U. Kaiser, T. Saito, P. Ayala, T. Pichler, Angew. Chem. Int. Ed. 2021, 60, 9897.
- 37V. V. Nascimento, W. Q. Neves, R. S. Alencar, G. Li, C. Fu, R. C. Haddon, E. Bekyarova, J. Guo, S. S. Alexandre, R. W. Nunes, A. G. Souza Filho, C. Fantini, ACS Nano 2021, 15, 8574.
- 38R. Kitaura, N. Imazu, K. Kobayashi, H. Shinohara, Nano Lett. 2008, 8, 693.
- 39L. Shi, K. Yanagi, K. Cao, U. Kaiser, P. Ayala, T. Pichler, ACS Nano 2018, 12, 8477.
- 40A. V. Talyzin, I. V. Anoshkin, A. V. Krasheninnikov, R. M. Nieminen, A. G. Nasibulin, H. Jiang, E. I. Kauppinen, Nano Lett. 2011, 11, 4352.
- 41M. Vandescuren, P. Hermet, V. Meunier, L. Henrard, P. Lambin, Phys. Rev. B 2008, 78, 195401.
- 42R. Gillen, M. Mohr, C. Thomsen, J. Maultzsch, Phys. Rev. B 2009, 80, 155418.
- 43J. Overbeck, G. Borin Barin, C. Daniels, M. L. Perrin, L. Liang, O. Braun, R. Darawish, B. Burkhardt, T. Dumslaff, X.-Y. Wang, A. Narita, K. Müllen, V. Meunier, R. Fasel, M. Calame, P. Ruffieux, Phys. Status Solidi B 2019, 256, 1900343.
- 44H. Kuzmany, L. Shi, M. Martinati, S. Cambré, W. Wenseleers, J. Kürti, J. Koltai, G. Kukucska, K. Cao, U. Kaiser, T. Saito, T. Pichler, Carbon 2021, 171, 221.
- 45H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Eur. Phys. J. B 2001, 22, 307.
- 46S. Cambré, B. Schoeters, S. Luyckx, E. Goovaerts, W. Wenseleers, Phys. Rev. Lett. 2010, 104, 207401.
- 47W. Cui, P. Ayala, T. Pichler, L. Shi, Carbon 2024, 219, 118784.
- 48T. Koyama, T. Tsunekawa, T. Saito, K. Asaka, Y. Saito, H. Kishida, A. Nakamura, J. Phys. Chem. C 2014, 118, 21671.
- 49J. Kürti, J. Koltai, B. Gyimesi, H. Kuzmany, Phys. Status Solidi B 2015, 252, 2541.
- 50Z. Liu, Z. Chen, C. Wang, H. I. Wang, M. Wuttke, X.-Y. Wang, M. Bonn, L. Chi, A. Narita, K. Müllen, J. Am. Chem. Soc. 2020, 142, 17881.
- 51J. Overbeck, G. B. Barin, C. Daniels, M. L. Perrin, O. Braun, Q. Sun, R. Darawish, M. De Luca, X.-Y. Wang, T. Dumslaff, A. Narita, K. Müllen, P. Ruffieux, V. Meunier, R. Fasel, M. Calame, ACS Nano 2019, 13, 13083.