Spatial-Temporal Scanning Kelvin Probe Microscopy for Evaluating Ionic Velocity in Solid-State Electrolytes
Fang Wang
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorShi Cheng
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorXuyang Wang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorChunlin Song
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJiangyu Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Hongyun Jin
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Boyuan Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFang Wang
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorShi Cheng
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
Search for more papers by this authorXuyang Wang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorChunlin Song
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorJiangyu Li
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Hongyun Jin
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faulty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Boyuan Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Solid-state electrolytes (SSEs) with high ionic conductivity are crucial for the development of high-performance all-solid-state batteries. While a growing number of strategies based on nanoengineering are emerging to enhance the ionic conductivity of SSEs, understanding nanoscale ionic transport remains a nontrivial challenge. In this work, a simple yet effective approach is developed for in situ measuring microscopic ionic velocity in SSEs. Ionic transport under an electric field is directly captured using spatial-temporal scanning Kelvin probe microscopy (SKPM). This method reliably quantifies the microscopic ionic conductivity of SSEs, consistent with the results of macroscopic electrochemical impedance spectra, while providing nanoscale spatial resolution that is essential for comprehending ionic migration in nanostructured systems. The spatial-temporal SKPM, validated on LiZr2(PO4)3 and Li1.05Zr1.95Fe0.05(PO4)3, can be further extended to other SSEs for direct visualization of ionic migration dynamics. This work contributes to the understanding of ionic transport mechanisms and paves the way for advancements in the ionic conductivity of SSEs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202401135-sup-0001-SuppMat.docx2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Zhao, S. Stalin, C-Z. Zhao, L. A. Archer, Nat. Rev. Mater. 2020, 5, 229.
- 2S. Dong, L. Sheng, L. Wang, J. Liang, H. Zhang, Z. Chen, H. Xu, X. He, Adv. Funct. Mater. 2023, 33, 2304371.
- 3Z. Gu, K. Wang, Y. Rao, P. Nan, L. Cheng, B. Ge, W. Zhang, C. Ma, Nano Lett. 2023, 23, 11818.
- 4F. Liang, Y. Sun, Y. Yuan, J. Huang, M. Hou, J. Lu, Mater. Today 2021, 50, 418.
- 5Y. Lu, X. Meng, J. A. Alonso, M. T. Fernández-Díaz, C. Sun, ACS Appl. Mater. Interfaces 2018, 11, 2042.
- 6S. Duan, J. Yu, Y. Sun, A. Li, S. Chen, K. Qu, Z. Ding, Z. Liu, Y. Li, C. Huang, M. Liu, J. Liu, J. Shi, B. Huang, X. Tian, S. Hou, S. Xie, Y. Liu, P. Gao, J. Li, H. Jin, J. Power Sources 2020, 449, 227574.
- 7X. Chi, M. Li, X. Chen, J. Xu, X. Yin, S. Li, Z. Jin, Z. Luo, X. Wang, D. Kong, M. Han, J-J. Xu, Z. Liu, D. Mei, J. Wang, G. Henkelman, J. Yu, J. Am. Chem. Soc. 2023, 145, 24116.
- 8J-H. Lee, H. Lee, J. Lee, T. W. Kang, J. H. Park, J-H. Shin, H. Lee, D. Majhi, S. U. Lee, J-H. Kim, ACS Nano 2023, 17, 17372.
- 9B. B. Duff, S. J. Elliott, J. Gamon, L. M. Daniels, M. J. Rosseinsky, F. Blanc, Chem. Mater. 2022, 35, 27.
- 10C. Woodahl, S. Jamnuch, A. Amado, C. B. Uzundal, E. Berger, P. Manset, Y. Zhu, Y. Li, D. D. Fong, J. G. Connell, Y. Hirata, Y. Kubota, S. Owada, K. Tono, M. Yabashi, S. G. E. te Velthuis, S. Tepavcevic, I. Matsuda, W. S. Drisdell, C. P. Schwartz, J. W. Freeland, T. A. Pascal, A. Zong, M. Zuerch, Nat. Mater. 2023, 22, 848.
- 11I. Hodge, M. Ingram, A. West, J. Electroanal. Chem. Interfacial Electrochem. 1976, 74, 125.
- 12A. Cronk, Y-T. Chen, G. Deysher, S-Y. Ham, H. Yang, P. Ridley, B. Sayahpour, L. H. B. Nguyen, J. A. S. Oh, J. Jang, D. H. S. Tan, Y. S. Meng, ACS Energy Lett. 2023, 8, 827.
- 13Z. Sun, J. Pan, W. Chen, H. Chen, S. Zhou, X. Wu, Y. Wang, K. Kim, J. Li, H. Liu, Y. Yuan, J. Wang, D. Su, D. L. Peng, Q. Zhang, Adv. Energy Mater. 2023, 14, 2303165.
- 14C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, M. Chi, Nano Lett. 2016, 16, 7030.
- 15F. Xu, L. Wu, Q. Meng, M. Kaltak, J. Huang, J. L. Durham, M. Fernandez-Serra, L. Sun, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi, M. S. Hybertsen, Y. Zhu, Nat. Commun. 2017, 8, 15400.
- 16C. Yu, S. Ganapathy, E. R. H. van Eck, L. van Eijck, S. Basak, Y. Liu, L. Zhang, H W. Zandbergen, M. Wagemaker, J. Mater. Chem. A 2017, 5, 21178.
- 17K. Mori, K. Enjuji, S. Murata, K. Shibata, Y. Kawakita, M. Yonemura, Y. Onodera, T. Fukunaga, Phys. Rev. Appl. 2015, 4, 054008.
- 18D-W. Chung, N. Balke, S. V. Kalinin, R. Edwin García, J. Electrochem. Soc. 2011, 158, A1083.
- 19S. Yang, B. Yan, T. Li, J. Zhu, L. Lu, K. Zeng, Phys. Chem. Chem. Phys. 2015, 17, 22235
- 20G. Park, H. Kim, J. Oh, Y. Choi, O. S. Ovchinnikova, S. Min, Y-G. Lee, S. Hong, ACS Appl. Energy Mater. 2021, 4, 784.
- 21A. Li, D. Shan, C. Lei, S. Xie, K. Pan, J. Li, Y. Liu, Int. J. Solids Struct. 2021, 219, 188.
- 22Y. Hu, V. Pecunia, L. Jiang, C. A. Di, X. Gao, H. Sirringhaus, Adv. Mater. 2016, 28, 4713.
- 23Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng, X. Yang, Y. Yang, J. Hu, J. He, Q. Li, Energy Stor. Mater. 2020, 28, 255.
- 24S. D. Collins, O. V. Mikhnenko, T. L. Nguyen, Z. D. Rengert, G. C. Bazan, H. Y. Woo, T. Q. Nguyen, Adv. Electron. Mater. 2017, 3, 1700005.
- 25E. J. Fuller, E. Strelcov, J. L. Weaver, M. W. Swift, J. D. Sugar, A. Kolmakov, N. Zhitenev, J. J. McClelland, Y. Qi, J. A. Dura, A. A. Talin, ACS Energy Lett. 2021, 6, 3944.
- 26S. T. Birkhold, J. T. Precht, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, D. S. Ginger, J. Phys. Chem. C 2018, 122, 12633.
- 27S. T. Birkhold, J. T. Precht, H. Liu, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, X. Li, D. S. Ginger, ACS Energy Lett. 2018, 3, 1279.
- 28F. Zhang, L. Zhang, X. Wang, K. Liu, B. Huang, Y. Wang, J. Li, Appl. Phys. Lett. 2022, 121, 243905.
- 29S. V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A. Baddorf, Y. Lilach, M. Moskovits, A. Kolmakov, J. Appl. Phys. 2005, 98, 044503.
- 30L. Yan, C. Punckt, I. A. Aksay, W. Mertin, G. Bacher, Nano Lett. 2011, 11, 3543.
- 31E. Strelcov, S. Jesse, Y-L. Huang, Y-C. Teng, I. I. Kravchenko, Y-H. Chu, S. V. Kalinin, ACS Nano 2013, 7, 6806.
- 32K. Liu, F. Zhang, Z. Liu, C. Song, L. Zhang, W. Ming, L. Yang, Y. Wang, B. Huang, J. Li, Small Methods 2024, 8, 2301755.
- 33J. Yu, B. Huang, A. Li, S. Duan, H. Jin, M. Ma, Y. Ou, S. Xie, Y. Liu, J. Li, Nano Energy 2019, 66, 104160.
- 34H. Smith, L. Collins, A. Sehirlioglu, ACS Appl. Electron. Mater. 2021, 4, 206.
- 35F. Jiang, J. Pothoof, F. Muckel, R. Giridharagopal, J. Wang, D. S. Ginger, ACS Energy Lett. 2020, 6, 100.
- 36T. Nakamura, K. Amezawa, J. r. Kulisch, W. G. Zeier, J. r. Janek, ACS Appl. Mater. Interfaces 2019, 11, 19968.
- 37R. E. W. Casselton, Phys. Status. Solidi. 1970, 2, 571.
- 38K. Arbi, M. Ayadi-Trabelsi, J. Sanz, J. Mater. Chem. 2002, 12, 2985.
- 39S. S. Duan, C. Huang, M. Liu, Z. W. Cao, X. C. Tian, S. Hou, J. Y. Li, B. Y. Huang, H. Y. Jin, J. Mater. Chem. A 2021, 9, 7817.
- 40S. K. Kim, A. Mao, S. Sen, S. Kim, Chem. Mater. 2014, 26, 5695.
- 41F. Sudreau, D. Petit, J. Boilot, J. Solid State Chem. 1989, 83, 78.
- 42A. Axt, I. M. Hermes, V. W. Bergmann, N. Tausendpfund, S. A. L. Weber, Beilstein J. Nanotech. 2018, 9, 1809.
- 43L. Collins, M. B. Okatan, Q. Li, I. I. Kravenchenko, N. V. Lavrik, S. V. Kalinin, B. J. Rodriguez, S. Jesse, Nanotechnology 2015, 26, 175707.
- 44J. X. Yu, S. S. Duan, B. Y. Huang, H. Y. Jin, S. H. Xie, J. Y. Li, Small Methods 2020, 4, 2000308.
- 45C. Zhu, T. Fuchs, S. A. L. Weber, F. H. Richter, G. Glasser, F. Weber, H-J. Butt, J. Janek, R. Berger, Nat. Commun. 2023, 14, 1300.
- 46A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878.
- 47D. O. Alikin, K. N. Romanyuk, B. N. Slautin, D. Rosato, V. Y. Shur, A. L. Kholkin, Nanoscale 2018, 10, 2503.
- 48E. Nasr Esfahani, A. Eshghinejad, Y. Ou, J. Zhao, S. Adler, J. Li, Microscopy Today 2017, 25, 12.
- 49D. Zhang, Z-D. Luo, Y. Yao, P. Schoenherr, C. Sha, Y. Pan, P. Sharma, M. Alexe, J. Seidel, Nano Lett. 2021, 21, 995.