Anion-Doped Cobalt Selenide with Porous Architecture for High-Rate and Flexible Lithium–Sulfur Batteries
Tao Feng
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Teng Zhao
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorShuangfei Zhu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorNanxiang Zhang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorZhuangzhuang Wei
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorKe Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorLi Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
Search for more papers by this authorFeng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
Search for more papers by this authorCorresponding Author
Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorTao Feng
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Teng Zhao
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorShuangfei Zhu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorNanxiang Zhang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorZhuangzhuang Wei
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorKe Wang
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorLi Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
Search for more papers by this authorFeng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
Search for more papers by this authorCorresponding Author
Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing, 100081 P. R. China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081 P. R. China
Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Emerging catalytic host for sulfur is an effective approach to breaking the limits of lithium–sulfur batteries for practical applications. Herein, the hydrangea-shaped Co0.85Se electrocatalyst with macroporous architecture is synthesized. Besides, to improve the electronic conductivity of Co0.85Se, some defects (S-doped) are introduced into the structure of crystals. The S-doped Co0.85Se exhibited an outstanding electrocatalytic effect on lithium polysulfides conversion and can induce and regulate uniform growth of insoluble Li2S on its surface due to the synergistic adsorption by Se and S. As a result, the S/C cathode achieved a high initial capacity of 1340.6 mAh g−1 at 0.5 C and a stable cycling capacity of 666.6 mAh g−1 at 1 C after 500 cycles by 5 wt% Co0.85SeS additions. Moreover, high S loading cathodes are designed through in situ synthesis of Co0.85SeS on flexible carbon cloth (Co0.85SeS@CC). The porous and open framework of Co0.85SeS@CC facilitated electrolyte infiltration and accommodated the volume change of sulfur during the charge/discharge process. Taking by these advantages, a high areal capacity of 9.663 mAh cm−2 is achieved at a high sulfur loading of 9.98 mg cm−2. Even at a high current density of 15 mA cm−2, a reversible capacity of 603.7 mAh g−1 is maintained at a sulfur loading of 6.52 mg cm−2. This proposed work provides a feasible approach to high-rate and flexible Li–S batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202100649-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Ji, X. Wang, Y. Jia, Q. Hu, L. Duan, Z. Geng, Z. Niu, W. Li, J. Liu, Y. Zhang, S. Feng, Adv. Funct. Mater. 2020, 30, 1910533.
- 2A. Fu, C. Wang, F. Pei, J. Cui, X. Fang, N. Zheng, Small 2019, 15, 1804786.
- 3A. Hu, M. Zhou, T. Lei, Y. Hu, X. Du, C. Gong, C. Shu, J. Long, J. Zhu, W. Chen, X. Wang, J. Xiong, Adv. Energy Mater. 2020, 10, 2002180.
- 4X. Chen, S. Zeng, H. Muheiyati, Y. Zhai, C. Li, X. Ding, L. Wang, D. Wang, L. Xu, Y. He, Y. Qian, ACS Energy Lett. 2019, 4, 1496.
- 5Z. Sun, S. Vijay, H. H. Heenen, A. Y. S. Eng, W. Tu, Y. Zhao, S. W. Koh, P. Gao, Z. W. Seh, K. Chan, H. Li, Adv. Energy Mater. 2020, 10, 1904010.
- 6H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 7F. Zeng, W. Wang, A. Wang, K. Yuan, Z. Jin, Y. S. Yang, ACS Appl. Mater. Interfaces 2015, 7, 26257.
- 8S. Yu, W. Cai, L. Chen, L. Song, Y. Song, J. Energy Chem. 2021, 55, 533.
- 9Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu, R. Hu, L. Yang, Y. Feng, J. Liu, Z. Shi, L. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 2019, 1902228.
- 10Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Adv. Mater. 2020, 32, 1905923.
- 11F. Wu, Q. Zhu, R. Chen, N. Chen, Y. Chen, L. Li, Electrochim. Acta 2015, 184, 356.
- 12S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, X. Sun, ACS Energy Lett. 2019, 4, 755.
- 13L. Luo, S. H. Chung, H. Yaghoobnejad Asl, A. Manthiram, Adv. Mater. 2018, 30, 1804149.
- 14W. Zhou, C. Wang, Q. Zhang, H. D. Abruña, Y. He, J. Wang, S. X. Mao, X. Xiao, Adv. Energy Mater. 2015, 5, 1401752.
- 15C. Li, X. Liu, L. Zhu, R. Huang, M. Zhao, L. Xu, Y. Qian, Chem. Mater. 2018, 30, 6969.
- 16Y. Song, Z. Sun, Z. Fan, W. Cai, Y. Shao, G. Sheng, M. Wang, L. Song, Z. Liu, Q. Zhang, J. Sun, Nano Energy 2020, 70, 104555.
- 17N. Kang, Y. Lin, L. Yang, D. Lu, J. Xiao, Y. Qi, M. Cai, Nat. Commun. 2019, 10, 4597.
- 18J. Y. Hwang, S. Shin, C. S. Yoon, Y. K. Sun, ACS Energy Lett. 2019, 4, 2787.
- 19Q. Pang, D. Kundu, L. F. Nazar, Mater. Horiz. 2016, 3, 130.
- 20N. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang, Z. Xu, Y. Ding, X. Xu, Y. Du, S. Dou, G. Yu, Energy Environ. Sci. 2020, 13, 562.
- 21Q. Zhu, Q. Zhao, Y. An, B. Anasori, H. Wang, B. Xu, Nano Energy 2020, 33, 402.
- 22J. Xie, B. Q. Li, H. J. Peng, Y. W. Song, M. Zhao, X. Chen, Q. Zhang, J. Q. Huang, Adv. Mater. 2019, 31, 1903813.
- 23H. Zhang, W. Zhao, M. Zou, Y. Wang, Y. Chen, L. Xu, H. Wu, A. Cao, Adv. Energy Mater. 2018, 8, 1800013.
- 24R. Liu, W. Liu, Y. Bu, W. Yang, C. Wang, C. Priest, Z. Liu, Y. Wang, J. Chen, Y. Wang, J. Cheng, X. Lin, X. Feng, G. Wu, Y. Ma, W. Huang, ACS Nano 2020, 6, 437.
- 25M. Wang, X. Xia, Y. Zhong, J. Wu, R. Xu, Z. Yao, D. Wang, W. Tang, X. Wang, J. Tu, Chemistry 2018, 64, 711.
- 26J. Wang, Y. Cui, D. Wang, Adv. Mater. 2018, 31, 1801993.
- 27J. H. Park, H. Gim, W. Y. Choi, H. Lee, S. Y. Lee, J. W. Lee, ACS Appl. Energy Mater. 2020, 3, 5247.
- 28K. Xiang, M. Chen, J. Hu, S. Wang, X. Wen, Y. Zhu, H. Chen, H. Shu, ChemElectroChem 2019, 6, 1.
10.1002/celc.201801707 Google Scholar
- 29J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu, P. Liang, H. Yang, X. Shen, Z. X. Shen, Adv. Sci. 2018, 5, 1800621.
- 30D. Yang, C. Zhang, J. J. Biendicho, X. Han, Z. Liang, R. Du, M. Li, J. Li, J. Arbiol, J. Llorca, Y. Zhou, J. R. Morante, A. Cabot, ACS Nano 2020, 14, 15492.
- 31N. Wang, Z. Xu, X. Xu, T. Liao, B. Tang, Z. Bai, S. Dou, ACS Appl. Mater. Interfaces 2018, 10, 13573.
- 32X. Yu, G. Zhou, Y. Cui, ACS Appl. Mater. Interfaces 2019, 11, 3080.
- 33M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang, X. Wu, D. Tian, K. Sun, Y. Qiu, X. Yin, Y. Zhang, N. Zhang, ACS Energy Lett. 2020, 5, 3041.
- 34C. Wang, B. Zhang, H. Xia, L. Cao, B. Luo, X. Fan, J. Zhang, X. Ou, Small 2020, 16, 1905853.
- 35Y. Li, S. Lin, D. Wang, T. Gao, J. Song, P. Zhou, Z. Xu, Z. Yang, N. Xiao, S. Guo, Adv. Mater. 2020, 32, 1906722.
- 36J. He, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002654.
- 37C. Zhang, J. J. Biendicho, T. Zhang, R. Du, J. Li, X. Yang, J. Arbiol, Y. Zhou, J. R. Morante, A. Cabot, Adv. Funct. Mater. 2019, 29, 1903842.
- 38S. Shen, Z. Lin, K. Song, Z. Wang, L. Huang, L. Yan, F. Meng, Q. Zhang, L. Gu, W. Zhong, Angew. Chem., Int. Ed. 2021, 5, 1166.
- 39Y. Huang, Z. Wang, Y. Jiang, S. Li, Z. Li, H. Zhang, F. Wu, M. Xie, L. Li, R. Chen, Nano Energy 2018, 53, 524.
- 40H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1802768.
- 41G. Zhou, S. Zhao, T. Wang, S. Z. Yang, B. Johannessen, H. Chen, C. Liu, Y. Ye, Y. Wu, Y. Peng, C. Liu, S. P. Jiang, Q. Zhang, Y. Cui, Nano Lett. 2020, 20, 1252.
- 42Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Adv. Mater. 2019, 32, 1904876.
- 43L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nat. Catal. 2020, 3, 762.
- 44Y. Pan, L. Gong, X. Cheng, Y. Zhou, Y. Fu, J. Feng, H. Ahmed, H. Zhang, ACS Nano 2020, 14, 5917.
- 45G. Li, F. Lu, X. Dou, X. Wang, D. Luo, H. Sun, A. Yu, Z. Chen, J. Am. Chem. Soc. 2020, 142, 3583.
- 46Z. Ye, Y. Jiang, J. Qian, W. Li, T. Feng, L. Li, F. Wu, R. Chen, Nano Energy 2019, 64, 103965.
- 47Y. Yu, J. Guo, C. Su, X. Liu, H. Bai, W. Bai, K. Duan, Science Reports 2019, 9, 16864.
- 48Z. Xiao, Z. Yang, Z. Li, P. Li, R. Wang, ACS Nano 2019, 13, 3404.
- 49A. Bhargav, J. He, A. Gupta, A. Manthiram, Joule 2020, 4, 285.
- 50Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759.