A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood–Brain Barrier Model
Kaixiang Huang
Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN, 47405 USA
Search for more papers by this authorAndre D. Castiaux
Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO, 63103 USA
Search for more papers by this authorRam Podicheti
Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, IN, 47405 USA
Search for more papers by this authorDouglas B. Rusch
Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, IN, 47405 USA
Search for more papers by this authorCorresponding Author
R. Scott Martin
Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO, 63103 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lane A. Baker
Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN, 47405 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorKaixiang Huang
Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN, 47405 USA
Search for more papers by this authorAndre D. Castiaux
Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO, 63103 USA
Search for more papers by this authorRam Podicheti
Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, IN, 47405 USA
Search for more papers by this authorDouglas B. Rusch
Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, IN, 47405 USA
Search for more papers by this authorCorresponding Author
R. Scott Martin
Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO, 63103 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lane A. Baker
Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN, 47405 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The blood–brain barrier (BBB) protects the central nervous system from toxins and pathogens in the blood by regulating permeation of molecules through the barrier interface. In vitro BBB models described to date reproduce some aspects of BBB functionality, but also suffer from incomplete phenotypic expression of brain endothelial traits, difficulty in reproducibility and fabrication, or overall cost. To address these limitations, a 3D BBB model based on a hybrid paper/nanofiber scaffold is described. The cell culture platform utilizes lens paper as a framework to accommodate 3D culture of astrocytes. An electrospun nanofiber layer is coated onto one face of the paper to mimic the basement membrane and support growth of an organized 2D layer of endothelial cells (ECs). Human induced pluripotent stem cell-derived ECs and astrocytes are co-cultured to develop a human BBB model. Morphological and spatial organization of model are validated with confocal microscopy. Measurements of transendothelial resistance and permeability demonstrate the BBB model develops a high-quality barrier and responds to hyperosmolar treatments. RNA-sequencing shows introduction of astrocytes both regulates EC tight junction proteins and improves endothelial phenotypes related to vasculogenesis. This model shows promise as a model platform for future in vitro studies of the BBB.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
RNA-sequencing data have been deposited in the Gene Expression Omnibus (GEO accession number: GSE181332).
Supporting Information
Filename | Description |
---|---|
smtd202100592-sup-0001-SuppMat.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, D. J. Begley, Neurobiol. Dis. 2010, 37, 13.
- 2A. D. Wong, M. Ye, A. F. Levy, J. D. Rothstein, D. E. Bergles, P. C. Searson, Front. Neuroeng. 2013, 6, 7.
- 3R. Daneman, A. Prat, Cold Spring Harbor Perspect. Biol. 2015, 7, a020412.
- 4E. Zenaro, G. Piacentino, G. Constantin, Neurobiol. Dis. 2017, 107, 41.
- 5B. S. Desai, A. J. Monahan, P. M. Carvey, B. Hendey, Cell Transplant. 2007, 16, 285.
- 6R. K. Jain, E. di Tomaso, D. G. Duda, J. S. Loeffler, A. G. Sorensen, T. T. Batchelor, Nat. Rev. Neurosci. 2007, 8, 610.
- 7W. M. Pardridge, Brain Drug Targeting: The Future Of Brain Drug Development, Cambridge University Press, Cambridge, England 2001.
10.1017/CBO9780511549571 Google Scholar
- 8W. M. Pardridge, NeuroRx 2005, 2, 3.
- 9J. Bicker, G. Alves, A. Fortuna, A. Falcão, Eur. J. Pharm. Biopharm. 2014, 87, 409.
- 10H. C. Helms, N. J. Abbott, M. Burek, R. Cecchelli, P.-O. Couraud, M. A. Deli, C. Förster, H. J. Galla, I. A. Romero, E. V. Shusta, M. J. Stebbins, E. Vandenhaute, B. Weksler, B. Brodin, J. Cereb, Blood Flow Metab. 2016, 36, 862.
- 11N. J. Abbott, L. Rönnbäck, E. Hansson, Nat. Rev. Neurosci. 2006, 7, 41.
- 12A. Armulik, G. Genové, M. Mäe, M. H. Nisancioglu, E. Wallgard, C. Niaudet, L. He, J. Norlin, P. Lindblom, K. Strittmatter, B. R. Johansson, C. Betsholtz, Nature 2010, 468, 557.
- 13M. Zonta, M. C. Angulo, S. Gobbo, B. Rosengarten, K.-A. Hossmann, T. Pozzan, G. Carmignoto, Nat. Neurosci. 2003, 6, 43.
- 14I. Wilhelm, I. A. Krizbai, Mol. Pharmaceutics 2014, 11, 1949.
- 15A. Wolff, M. Antfolk, B. Brodin, M. Tenje, J. Pharm. Sci. 2015, 104, 2727.
- 16H. Cho, J. H. Seo, K. H. K. Wong, Y. Terasaki, J. Park, K. Bong, K. Arai, E. H. Lo, D. Irimia, Sci. Rep. 2015, 5, 15222.
- 17J. D. Wang, E.-S. Khafagy, K. Khanafer, S. Takayama, M. E. H. ElSayed, Mol. Pharmaceutics 2016, 13, 895.
- 18G. Adriani, D. Ma, A. Pavesi, R. D. Kamm, E. L. K. Goh, Lab Chip 2017, 17, 448.
- 19M. Campisi, Y. Shin, T. Osaki, C. Hajal, V. Chiono, R. D. Kamm, Biomaterials 2018, 180, 117.
- 20S. I. Ahn, Y. J. Sei, H.-J. Park, J. Kim, Y. Ryu, J. J. Choi, H.-J. Sung, T. J. MacDonald, A. I. Levey, Y. Kim, Nat. Commun. 2020, 11, 175.
- 21C. Y. Tay, M. S. Muthu, S. L. Chia, K. T. Nguyen, S.-S. Feng, D. T. Leong, Adv. Funct. Mater. 2016, 26, 4046.
- 22K. Ng, B. Gao, K. W. Yong, Y. Li, M. Shi, X. Zhao, Z. Li, X. Zhang, B. Pingguan-Murphy, H. Yang, F. Xu, Mater. Today 2017, 20, 32.
- 23R. M. Kenney, C. C. Lloyd, N. A. Whitman, M. R. Lockett, Chem. Commun. 2017, 53, 7194.
- 24H. Juvonen, A. Määttänen, P. Laurén, P. Ihalainen, A. Urtti, M. Yliperttula, J. Peltonen, Acta Biomater. 2013, 9, 6704.
- 25F. Deiss, W. L. Matochko, N. Govindasamy, E. Y. Lin, R. Derda, Angew. Chem., Int. Ed. 2014, 53, 6374.
- 26S. M. Cramer, T. S. Larson, M. R. Lockett, Anal. Chem. 2019, 91, 10916.
- 27Y.-H. Chen, Z.-K. Kuo, C.-M. Cheng, Trends Biotechnol. 2015, 33, 4.
- 28F. Tobias, J. C. McIntosh, G. J. LaBonia, M. W. Boyce, M. R. Lockett, A. B. Hummon, Anal. Chem. 2019, 91, 15370.
- 29B. Samara, M. Deliorman, P. Sukumar, M. A. Qasaimeh, Lab Chip 2021, 21, 844.
- 30R. Derda, S. K. Y. Tang, A. Laromaine, B. Mosadegh, E. Hong, M. Mwangi, A. Mammoto, D. E. Ingber, G. M. Whitesides, PLoS One 2011, 6, e18940.
- 31M. C. Sapp, H. J. Fares, A. C. Estrada, K. J. Grande-Allen, Acta Biomater. 2015, 13, 199.
- 32A. S. Truong, M. R. Lockett, Analyst 2016, 141, 3874.
- 33B. Mosadegh, M. R. Lockett, K. T. Minn, K. A. Simon, K. Gilbert, S. Hillier, D. Newsome, H. Li, A. B. Hall, D. M. Boucher, B. K. Eustace, G. M. Whitesides, Biomaterials 2015, 52, 262.
- 34R. M. Kenney, A. Loeser, N. A. Whitman, M. R. Lockett, Analyst 2019, 144, 206.
- 35J. D. Schiffman, C. L. Schauer, Polym. Rev. 2008, 48, 317.
- 36C. Chen, B. T. Mehl, S. A. Sell, R. S. Martin, Analyst 2016, 141, 5311.
- 37C. Chen, A. D. Townsend, E. A. Hayter, H. M. Birk, S. A. Sell, R. S. Martin, Anal. Bioanal. Chem. 2018, 410, 3025.
- 38B. T. Mehl, R. S. Martin, Anal. Methods 2019, 11, 1064.
- 39Y. Xia, H. Yang, S. Li, S. Zhou, L. Wang, Y. Tang, C. Cheng, R. Haag, Adv. Funct. Mater. 2021, 31, 2010145.
- 40K. Roshanbinfar, L. Vogt, F. Ruther, J. A. Roether, A. R. Boccaccini, F. B. Engel, Adv. Funct. Mater. 2020, 30, 1908612.
- 41C. Chen, J. Tang, Y. Gu, L. Liu, X. Liu, L. Deng, C. Martins, B. Sarmento, W. Cui, L. Chen, Adv. Funct. Mater. 2019, 29, 1806899.
- 42Y. Ding, W. Li, F. Zhang, Z. Liu, N. Zanjanizadeh Ezazi, D. Liu, H. A. Santos, Adv. Funct. Mater. 2019, 29, 1802852.
- 43D. Qi, S. Wu, H. Lin, M. A. Kuss, Y. Lei, A. Krasnoslobodtsev, S. Ahmed, C. Zhang, H. J. Kim, P. Jiang, B. Duan, ACS Appl. Mater. Interfaces 2018, 10, 21825.
- 44V. Pensabene, S. W. Crowder, D. A. Balikov, J. B. Lee, H. J. Sung, in Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, IEEE, Piscataway, NJ 2016, p. 125.
- 45L. L. Bischel, P. N. Coneski, J. G. Lundin, P. K. Wu, C. B. Giller, J. Wynne, B. R. Ringeisen, R. K. Pirlo, J. Biomed. Mater. Res., Part A 2016, 104, 901.
- 46R. Kalluri, Nat. Rev. Cancer 2003, 3, 422.
- 47C. S. Hughes, L. M. Postovit, G. A. Lajoie, Proteomics 2010, 10, 1886.
- 48H. K. Kleinman, G. R. Martin, Semin. Cancer Biol. 2005, 15, 378.
- 49G. Eda, S. Shivkumar, J. Appl. Polym. Sci. 2007, 106, 475.
- 50P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, Polymer 2005, 46, 4799.
- 51M. J. Aebersold, G. Thompson-Steckel, A. Joutang, M. Schneider, C. Burchert, C. Forró, S. Weydert, H. Han, J. Vörös, Front. Neurosci. 2018, 12, 94.
- 52S. Baiguera, C. Del Gaudio, L. Fioravanzo, A. Bianco, M. Grigioni, M. Folin, J. Mater. Sci.: Mater. Med. 2010, 21, 1353.
- 53S. Nag, in The Blood-Brain Barrier: Biology and Research Protocols, (Ed.: S. Nag), Humana Press, Totowa, NJ 2003, p. 3.
- 54T. Sun, D. Norton, R. J. McKean, J. W. Haycock, A. J. Ryan, S. MacNeil, Biotechnol. Bioeng. 2007, 97, 1318.
- 55C. Xu, F. Yang, S. Wang, S. Ramakrishna, J. Biomed. Mater. Res., Part A 2004, 71A, 154.
- 56S. Aday, R. Cecchelli, D. Hallier-Vanuxeem, M. P. Dehouck, L. Ferreira, Trends Biotechnol. 2016, 34, 382.
- 57S. Syvänen, Ö. Lindhe, M. Palner, B. R. Kornum, O. Rahman, B. Långström, G. M. Knudsen, M. Hammarlund-Udenaes, Drug Metab. Dispos. 2009, 37, 635.
- 58J. J. Unternaehrer, G. Q. Daley, Philos. Trans. R. Soc., B 2011, 366, 2274.
- 59E. S. Lippmann, S. M. Azarin, J. E. Kay, R. A. Nessler, H. K. Wilson, A. Al-Ahmad, S. P. Palecek, E. V. Shusta, Nat. Biotechnol. 2012, 30, 783.
- 60E. S. Lippmann, A. Al-Ahmad, S. M. Azarin, S. P. Palecek, E. V. Shusta, Sci. Rep. 2014, 4, 4160.
- 61A. R. Calabria, C. Weidenfeller, A. R. Jones, H. E. De Vries, E. V. Shusta, J. Neurochem. 2006, 97, 922.
- 62A.-C. Luissint, C. Artus, F. Glacial, K. Ganeshamoorthy, P.-O. Couraud, Fluids Barriers CNS 2012, 9, 23.
- 63S. G. Canfield, M. J. Stebbins, B. S. Morales, S. W. Asai, G. D. Vatine, C. N. Svendsen, S. P. Palecek, E. V. Shusta, J. Neurochem. 2017, 140, 874.
- 64S. G. Canfield, M. J. Stebbins, M. G. Faubion, B. D. Gastfriend, S. P. Palecek, E. V. Shusta, Fluids Barriers CNS 2019, 16, 25.
- 65S. I. Rapoport, Cell. Mol. Neurobiol. 2000, 20, 217.
- 66W. C. Cosolo, P. Martinello, W. J. Louis, N. Christophidis, Am. J. Physiol. Regul. Integr. Comp. Physiol. 1989, 256, R443.
- 67K. Huang, L. Zhou, K. Alanis, J. Hou, L. A. Baker, Chem. Sci. 2020, 11, 1307.
- 68B. Srinivasan, A. R. Kolli, M. B. Esch, H. E. Abaci, M. L. Shuler, J. J. Hickman, J. Lab. Autom. 2015, 20, 107.
- 69C. Coisne, L. Dehouck, C. Faveeuw, Y. Delplace, F. Miller, C. Landry, C. Morissette, L. Fenart, R. Cecchelli, P. Tremblay, B. Dehouck, Lab. Invest. 2005, 85, 734.
- 70E. S. Lippmann, S. M. Azarin, S. P. Palecek, E. V. Shusta, Fluids Barriers CNS 2020, 17, 64.
- 71T. Qian, S. E. Maguire, S. G. Canfield, X. Bao, W. R. Olson, E. V. Shusta, S. P. Palecek, Sci. Adv. 2017, 3, e1701679.
- 72H. K. Wilson, S. G. Canfield, M. K. Hjortness, S. P. Palecek, E. V. Shusta, Fluids Barriers CNS 2015, 12, 13.
- 73R. Patel, S. Page, A. J. Al-Ahmad, J. Neurochem. 2017, 142, 74.
- 74G. D. Vatine, R. Barrile, M. J. Workman, S. Sances, B. K. Barriga, M. Rahnama, S. Barthakur, M. Kasendra, C. Lucchesi, J. Kerns, N. Wen, W. R. Spivia, Z. Chen, J. Van Eyk, C. N. Svendsen, Cell Stem Cell 2019, 24, 995.
- 75S. L. Faley, E. H. Neal, J. X. Wang, A. M. Bosworth, C. M. Weber, K. M. Balotin, E. S. Lippmann, L. M. Bellan, Stem Cell Rep. 2019, 12, 474.
- 76B. Palikuqi, D.-H. T. Nguyen, G. Li, R. Schreiner, A. F. Pellegata, Y. Liu, D. Redmond, F. Geng, Y. Lin, J. M. Gómez-Salinero, M. Yokoyama, P. Zumbo, T. Zhang, B. Kunar, M. Witherspoon, T. Han, A. M. Tedeschi, F. Scottoni, S. M. Lipkin, L. Dow, O. Elemento, J. Z. Xiang, K. Shido, J. R. Spence, Q. J. Zhou, R. E. Schwartz, P. De Coppi, S. Y. Rabbany, S. Rafii, Nature 2020, 585, 426.
- 77Y. K. Kurokawa, R. T. Yin, M. R. Shang, V. S. Shirure, M. L. Moya, S. C. George, Tissue Eng., Part C 2017, 23, 474.
- 78R. N. Munji, A. L. Soung, G. A. Weiner, F. Sohet, B. D. Semple, A. Trivedi, K. Gimlin, M. Kotoda, M. Korai, S. Aydin, A. Batugal, A. C. Cabangcala, P. G. Schupp, M. C. Oldham, T. Hashimoto, L. J. Noble-Haeusslein, R. Daneman, Nat. Neurosci. 2019, 22, 1892.
- 79A. Mäe Maarja, L. He, S. Nordling, E. Vazquez-Liebanas, K. Nahar, B. Jung, X. Li, C. Tan Bryan, J. Chin Foo, A. Cazenave-Gassiot, R. Wenk Markus, Y. Zarb, B. Lavina, E. Quaggin Susan, M. Jeansson, C. Gu, L. Silver David, M. Vanlandewijck, C. Butcher Eugene, A. Keller, C. Betsholtz, Circ. Res. 2021, 128, e46.
- 80M. Hupe, M. X. Li, S. Kneitz, D. Davydova, C. Yokota, J. Kele, B. Hot, J. M. Stenman, M. Gessler, Sci. Signal. 2017, 10, eaag2476.
- 81I. M. Nilsson, M. Blomback, B. Blomback, Acta Med. Scand. 1959, 164, 263.
- 82H.-P. Gerber, A. McMurtrey, J. Kowalski, M. Yan, B. A. Keyt, V. Dixit, N. Ferrara, J. Biol. Chem. 1998, 273, 30336.
- 83P. ten Dijke, M.-J. Goumans, E. Pardali, Angiogenesis 2008, 11, 79.
- 84P. J. Gaillard, I. C. J. van der Sandt, L. H. Voorwinden, D. Vu, J. L. Nielsen, A. G. de Boer, D. D. Breimer, Pharm. Res. 2000, 17, 1198.
- 85A. H. Schinkel, Adv. Drug Delivery Rev. 1999, 36, 179.
- 86L. A. Doyle, D. D. Ross, Oncogene 2003, 22, 7340.
- 87S. Iyer, D. M. Ferreri, N. C. DeCocco, F. L. Minnear, P. A. Vincent, Am. J. Physiol.: Lung Cell. Mol. Physiol. 2004, 286, L1143.
- 88D. Vestweber, Arterioscler. Thromb. Vasc. Biol. 2008, 28, 223.
- 89R. Rosenthal, S. Milatz, S. M. Krug, B. Oelrich, J.-D. Schulzke, S. Amasheh, D. Günzel, M. Fromm, J. Cell Sci. 2010, 123, 1913.
- 90C.-C. Chen, Y. Zhou, C. A. Morris, J. Hou, L. A. Baker, Anal. Chem. 2013, 85, 3621.
- 91T. M. Lu, S. Houghton, T. Magdeldin, J. G. B. Durán, A. P. Minotti, A. Snead, A. Sproul, D.-H. T. Nguyen, J. Xiang, H. A. Fine, Z. Rosenwaks, L. Studer, S. Rafii, D. Agalliu, D. Redmond, R. Lis, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2016950118.
- 92M. Ginsberg, W. Schachterle, K. Shido, S. Rafii, Nat. Protoc. 2015, 10, 1975.
- 93Y. Li, H. Luo, T. Liu, E. Zacksenhaus, Y. Ben-David, Oncogene 2015, 34, 2022.
- 94A. M. Bolger, M. Lohse, B. Usadel, Bioinformatics 2014, 30, 2114.
- 95A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, Bioinformatics 2013, 29, 15.
- 96Y. Liao, G. K. Smyth, W. Shi, Bioinformatics 2014, 30, 923.
- 97M. I. Love, W. Huber, S. Anders, Genome Biol. 2014, 15, 550.