In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance Bifunctional Sensing Applications
Tiantian Dai
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
University of Science and Technology of China, Hefei, 230026 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorZanhong Deng
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorCorresponding Author
Xiaodong Fang
Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorHuadong Lu
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYong He
College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJunqing Chang
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShimao Wang
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorNengwei Zhu
Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
Search for more papers by this authorCorresponding Author
Liang Li
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Gang Meng
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorTiantian Dai
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
University of Science and Technology of China, Hefei, 230026 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorZanhong Deng
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorCorresponding Author
Xiaodong Fang
Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorHuadong Lu
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, 030006 China
Search for more papers by this authorYong He
College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044 China
Search for more papers by this authorJunqing Chang
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShimao Wang
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
Search for more papers by this authorNengwei Zhu
Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118 China
Search for more papers by this authorCorresponding Author
Liang Li
School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Gang Meng
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
Advanced Laser Technology Laboratory of Anhui Province, Hefei, 230037 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Seeking a facile approach to directly assemble bridged metal oxide nanowires on substrates with predefined electrodes without the need for complex postsynthesis alignment and/or device procedures will bridge the gap between fundamental research and practical applications for diverse biochemical sensing, electronic, optoelectronic, and energy storage devices. Herein, regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) are rationally designed on indium tin oxide electrodes via thermal oxidation of ordered Cu microhemisphere arrays obtained by solid-state dewetting of patterned Ag/Cu/Ag films. Both the position and spacing of CuO microhemisphere nanowires can be well controlled by as-used shadow mask and the thickness of Cu film, which allows homogeneous manipulation of the bridging of adjacent nanowires grown from neighboring CuO hemispheres, and thus benefits highly sensitive trimethylamine (TMA) sensors and broad band (UV–visible to infrared) photodetectors. The electrical response of 3.62 toward 100 ppm TMA is comparable to that of state-of-the-art CuO-based sensors. Together with the feasibility of in situ assembly of RB-MNAs device arrays via common lithographic technologies, this work promises commercial device applications of CuO nanowires.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202100202-sup-0001-SuppMat.pdf7.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Yao, H. Yan, C. M. Lieber, Nat. Nanotechnol. 2013, 8, 329.
- 2Y. Z. Long, M. Yu, B. Sun, C. Z. Gu, Z. Y. Fan, Chem. Soc. Rev. 2012, 41, 4560.
- 3S. Xu, Y. Shen, Y. Ding, Z. L. Wang, Adv. Funct. Mater. 2010, 20, 1493.
- 4Q. Liu, Z. Hao, X. Liao, X. Pan, S. Li, L. Xu, L. Mai, Small 2019, 15, 1902141.
- 5T. Takahashi, K. Takei, J. C. Ho, Y.-L. Chueh, Z. Fan, A. Javey, J. Am. Chem. Soc. 2009, 131, 2102.
- 6S. Wu, K. Huang, E. Shi, W. Xu, Y. Fang, Y. Yang, A. Cao, ACS Nano 2014, 8, 3522.
- 7D. Zhao, H. Huang, S. Chen, Z. Li, S. Li, M. Wang, H. Zhu, X. Chen, Nano Lett. 2019, 19, 3448.
- 8W. J. Park, K. J. Choi, M. H. Kim, B. H. Koo, J. L. Lee, J. M. Baik, ACS Appl. Mater. Interfaces 2013, 5, 6802.
- 9Y. B. Li, T. Tokizono, M. Y. Liao, M. A. Zhong, Y. Koide, I. Yamada, J. J. Delaunay, Adv. Funct. Mater. 2010, 20, 3972.
- 10M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, J. G. Park, Sens. Actuators, B 2009, 138, 168.
- 11P. T. H. Van, D. D. Dai, N. Van Duy, N. D. Hoa, N. Van Hieu, Sens. Actuators, B 2016, 227, 198.
- 12J.-H. Kim, A. Katoch, S.-W. Choi, S. S. Kim, Sens. Actuators, B 2015, 212, 190.
- 13Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, J.-J. Delaunay, Adv. Funct. Mater. 2010, 20, 3972.
- 14D. Chen, X. Song, Z. Zhang, Z. Li, J. She, S. Deng, N. Xu, J. Chen, Appl. Phys. Lett. 2015, 107, 243105.
- 15X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z. X. Shen, J. Tu, H. J. Fan, Small 2016, 12, 3048.
- 16Y. D. Kim, H. Kim, Y. Cho, J. H. Ryoo, C.-H. Park, P. Kim, Y. S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V. E. Dorgan, E. Pop, T. F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S. W. Lee, M.-H. Bae, Y. D. Park, Nat. Nanotechnol. 2015, 10, 676.
- 17H. M. Tan, C. Manh Hung, T. M. Ngoc, H. Nguyen, N. Duc Hoa, N. Van Duy, N. V. Hieu, ACS Appl. Mater. Interfaces 2017, 9, 6153.
- 18D. Yang, D. Kim, S. H. Ko, A. P. Pisano, Z. Li, I. Park, Adv. Mater. 2015, 27, 1207.
- 19S. Steinhauer, A. Chapelle, P. Menini, M. Sowwan, ACS Sens. 2016, 1, 503.
- 20D. Yang, M. K. Fuadi, K. Kang, D. Kim, Z. Li, I. Park, ACS Appl. Mater. Interfaces 2015, 7, 10152.
- 21S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C. H. Sow, J. Am. Chem. Soc. 2012, 134, 4905.
- 22Z. Li, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, Y. Q. Fu, Z. Wang, ACS Appl. Mater. Interfaces 2016, 8, 20962.
- 23L. Siebert, O. Lupan, M. Mirabelli, N. Ababii, M. I. Terasa, S. Kaps, V. Cretu, A. Vahl, F. Faupel, R. Adelung, ACS Appl. Mater. Interfaces 2019, 11, 25508.
- 24Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J. L. Sun, ACS Appl. Mater. Interfaces 2014, 6, 20887.
- 25Z. Lin, P. Zhao, P. Ye, Y. Chen, H. Gan, J. She, S. Deng, N. Xu, J. Chen, Sci. Rep. 2018, 8, 2131.
- 26Q. B. Zhang, K. L. Zhang, D. G. Xu, G. C. Yang, H. Huang, F. D. Nie, C. M. Liu, S. H. Yang, Prog. Mater. Sci. 2014, 60, 208.
- 27J. Y. Park, S.-W. Choi, S. S. Kim, J. Phys. Chem. C 2011, 115, 12774.
- 28H. Nguyen, C. T. Quy, N. D. Hoa, N. T. Lam, N. V. Duy, V. V. Quang, N. V. Hieu, Sens. Actuators, B 2014, 193, 888.
- 29O. Lupan, V. Postica, V. Cretu, N. Wolff, V. Duppel, L. Kienle, R. Adelung, Phys. Status Solidi RRL 2016, 10, 260.
- 30C. J. Love, J. D. Smith, Y. Cui, K. K. Varanasi, Nanoscale 2011, 3, 4972.
- 31K. L. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, J. Y. Chane-Ching, Nanotechnology 2007, 18, 275607.
- 32A. L.e Bris, F. Maloum, J. Teisseire, F. Sorin, Appl. Phys. Lett. 2014, 105, 203102.
- 33P. Farzinpour, A. Sundar, K. D. Gilroy, Z. E. Eskin, R. A. Hughes, S. Neretina, Nanoscale 2013, 5, 1929.
- 34M. A. Jabbareh, F. Monji, Calphad 2018, 60, 208.
- 35D. R. Lide, CRC Handbook of Chemistry and Physics, 2003–2004, CRC Press, Boca Raton, FL, USA 2003.
- 36D. Titus, E. James Jebaseelan Samuel, S. M. Roopan, in Green Synthesis, Characterization and Applications of Nanoparticles, Elsevier, New York 2019, p. 303.
10.1016/B978-0-08-102579-6.00012-5 Google Scholar
- 37L. Yuan, Y. Wang, R. Mema, G. Zhou, Acta Mater. 2011, 59, 2491.
- 38S. H. Park, B. Y. Kim, Y. K. Jo, Z. F. Dai, J. H. Lee, Sens. Actuators, B 2020, 309, 127805.
- 39A. Umar, A. A. Alshahrani, H. Algarni, R. Kumar, Sens. Actuators, B 2017, 250, 24.
- 40T. Dai, G. Meng, Z. Deng, Y. Chen, H. Liu, L. Li, S. Wang, J. Chang, P. Xu, X. Li, X. Fang, ACS Appl. Mater. Interfaces 2020, 12, 37295.
- 41G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan, X. Shen, ACS Appl. Mater. Interfaces 2012, 4, 744.
- 42Z. Xu, Y. Luo, G. Duan, ACS Appl. Mater. Interfaces 2019, 11, 8164.
- 43O. Lupan, N. Ababii, A. K. Mishra, O. Gronenberg, A. Vahl, U. Schurmann, V. Duppel, H. Kruger, L. Chow, L. Kienle, F. Faupel, R. Adelung, N. H. de Leeuw, S. Hansen, ACS Appl. Mater. Interfaces 2020, 12, 42248.
- 44J. E. Lee, C. K. Lim, H. J. Park, H. Song, S. Y. Choi, D. S. Lee, ACS Appl. Mater. Interfaces 2020, 12, 35688.
- 45Y. M. Choi, S.-Y. Cho, D. Jang, H.-J. Koh, J. Choi, C.-H. Kim, H.-T. Jung, Adv. Funct. Mater. 2019, 29, 1808319.
- 46F. Shao, F. Hernández-Ramírez, J. D. Prades, C. Fàbrega, T. Andreu, J. R. Morante, Appl. Surf. Sci. 2014, 311, 177.
- 47B. Sakthivel, G. Nammalvar, J. Alloys Compd. 2019, 788, 422.
- 48S. Bhuvaneshwari, N. Gopalakrishnan, J. Colloid Interface Sci. 2016, 480, 76.
- 49Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, J. Yang, J. Phys. Chem. C 2012, 116, 11994.
- 50Y. H. Choi, D. H. Kim, H. S. Han, S. Shin, S. H. Hong, K. S. Hong, Langmuir 2014, 30, 700.
- 51F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, RSC Adv. 2016, 6, 79343.
- 52N. S. Ramgir, C. P. Goyal, P. K. Sharma, U. K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A. K. Debnath, D. K. Aswal, S. K. Gupta, Sens. Actuators, B 2013, 188, 525.
- 53C. Dong, X. Xing, N. Chen, X. Liu, Y. Wang, Sens. Actuators, B 2016, 230, 1.
- 54X. Hu, Z. Zhu, Z. Li, L. Xie, Y. Wu, L. Zheng, Sens. Actuators, B 2018, 264, 139.
- 55J. Zhou, M. Ikram, A. U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Sens. Actuators, B 2018, 255, 1819.
- 56D. N. Oosthuizen, D. E. Motaung, H. C. Swart, Sens. Actuators, B 2018, 266, 761.
- 57L. Hou, C. Zhang, L. Li, C. Du, X. Li, X. F. Kang, W. Chen, Talanta 2018, 188, 41.
- 58S. Steinhauer, V. Singh, C. Cassidy, C. Gspan, W. Grogger, M. Sowwan, A. Kock, Nanotechnology 2015, 26, 175502.
- 59R. Poreddy, C. Engelbrekt, A. Riisager, Catal. Sci. Technol. 2015, 5, 2467.
- 60L. H. Xu, G. G. Zheng, S. X. Pei, J. F. Wang, Optik 2018, 158, 382.
- 61H.-J. Song, M.-H. Seo, K.-W. Choi, M.-S. Jo, J.-Y. Yoo, J.-B. Yoon, Sci. Rep. 2019, 9, 7334.
- 62X. Wu, J. Xu, G. Y. Chen, R. Fan, X. K. Liu, H. L. Xu, Green Energy Environ. 2017, 2, 387.
10.1016/j.gee.2017.02.002 Google Scholar
- 63O. Lupan, V. Postica, N. Wolff, O. Polonskyi, V. Duppel, V. Kaidas, E. Lazari, N. Ababii, F. Faupel, L. Kienle, R. Adelung, Small 2017, 13, 1602868.
- 64S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, V. I. Kleshch, J. Sainio, E. D. Obraztsova, S. N. Bokova, A. N. Obraztsov, E. I. Kauppinen, Nanotechnology 2009, 20, 165603.
- 65Y. Li, K. Keith, N. Chopra, J. Alloys Compd. 2017, 703, 414.