Improving the Performance of Birefringent Crystals by Molecular Assembly Strategy in the Solar-Blind UV Region
Guangsheng Xu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChenhui Hu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorHuimin Li
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Search for more papers by this authorJuanjuan Lu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhihua Yang
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jian Han
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shilie Pan
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGuangsheng Xu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChenhui Hu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorHuimin Li
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Search for more papers by this authorJuanjuan Lu
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZhihua Yang
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jian Han
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shilie Pan
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049 China
Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40–1 South Beijing Road, Urumqi, 830011 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Birefringent crystals are of great significance as the key element in the modulation of optical polarization state. However, there exists a mutual constraint between UV transparency and large birefringence, necessitating compromises. Herein, the micro-units that are beneficial to birefringence are selected and the crystal synthesis process is regulated by three molecular assembly strategies. First, the traditional π-conjugated groups are modified by introducing protons. Second, the π-conjugated groups are recombined through structural design, and different units are rationally assembled and oriented according to the beneficial way of birefringence. Third, inspired by the fluorination strategy in borate crystals, fluorine is added which can modify the chemical and function. The synthesis of a series of nine birefringent crystals, some of which (Rb2HCO3F·B(OH)3, Rb2C2O4·B(OH)3, RbHC2O4) exhibit almost the best optical properties in respective compounds of similar structure, can be regarded as birefringent crystals of potential use, and validate the effectiveness of the strategies. To the knowledge, this is the first experimental study on how to modify and regulate the assembly and arrangement of molecules of the birefringent crystals in the solar-blind UV region (λ < 280 nm). This work provides a reference for accelerating the exploration of birefringent crystals.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data will be made available on request. The supplemental crystallographic data for this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC: 2289346; 2294353; 2393715–2393716; 2393719; 2393721–2393722; 2393744, and 2393781. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033.
Supporting Information
Filename | Description |
---|---|
smll202504184-sup-0001-SuppMat.docx7.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Chen, B. Zhang, F. Zhang, Y. Wang, M. Zhang, Z. Yang, K. R. Poeppelmeier, S. Pan, J. Am. Chem. Soc. 2018, 140, 16311.
- 2J. S. Eismann, L. H. Nicholls, D. J. Roth, M. A. Alonso, P. Banzer, F. J. Rodríguez-Fortuño, A. V. Zayats, F. Nori, K. Y. Bliokh, Nat. Photonics 2021, 15, 156.
- 3F. Flossmann, U. T. Schwarz, M. Maier, M. R. Dennis, Phys. Rev. Lett. 2005, 95, 253901.
- 4B. Zhang, G. Shi, Z. Yang, F. Zhang, S. Pan, Angew. Chem., Int. Ed. 2017, 56, 3916.
- 5M. Mutailipu, M. Zhang, H. Wu, Z. Yang, Y. Shen, J. Sun, S. Pan, Nat. Commun. 2018, 9, 3089.
- 6S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T. E. Tiwald, S. B. Cronin, B. M. Howe, M. Mecklenburg, R. Haiges, D. J. Singh, H. Wang, M. A. Kats, J. Ravichandran, Ravichandran, J., Nat. Photonics 2018, 12, 392.
- 7A. Tagaya, H. Ohkita, M. Mukoh, R. Sakaguchi, Y. Koike, Science 2003, 301, 812.
- 8M. F. Weber, C. A. Stover, L. R. Gilbert, T. J. Nevitt, A. J. Ouderkirk, Science 2000, 287, 2451.
- 9M. Zhang, D. An, C. Hu, X. Chen, Z. Yang, S. Pan, J. Am. Chem. Soc. 2019, 141, 3258.
- 10N. Siegel, V. Lupashin, B. Storrie, G. Brooker, Nat. Photonics 2016, 10, 802.
- 11J. R. DeVore, J. Opt. Soc. Am. 1951, 41, 416.
- 12M. J. Dodge, Appl. Opt. 1984, 23, 1980.
- 13G. Ghosh, Opt. Commun. 1999, 163, 95.
- 14G. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng, F. Gan, J. Cryst. Growth 1998, 191, 517.
- 15H. Luo, T. Tkaczyk, E. L. Dereniak, K. Oka, R. Sampson, Opt. Lett. 2006, 31, 616.
- 16G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, K. R. Poeppelmeier, J. Am. Chem. Soc. 2017, 139, 10645.
- 17Y. Wang, B. Zhang, Z. Yang, S. Pan, Angew. Chem., Int. Ed. 2018, 57, 2150.
- 18M. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou, S. Pan, Angew. Chem., Int. Ed. 2018, 57, 6095.
- 19X. Wang, Y. Wang, B. Zhang, F. Zhang, Z. Yang, S. Pan, Angew. Chem., Int. Ed. 2017, 56, 14119.
- 20M. Wu, E. Tikhonov, A. Tudi, I. Kruglov, X. Hou, C. Xie, S. Pan, Z. Yang, Adv. Mater. 2023, 35, 2300848.
- 21A. Tudi, Z. Li, C. Xie, T. Baiheti, E. Tikhonov, F. Zhang, S. Pan, Z. Yang, Adv. Funct. Mater. 2024, 34, 2409716.
- 22A. Tudi, S. Han, Z. Yang, S. Pan, Coord. Chem. Rev. 2022, 459, 214380.
- 23Y. Hu, X. Jiang, T. Wu, Y. Xue, C. Wu, Z. Huang, Z. Lin, J. Xu, M. G. Humphrey, C. Zhang, Chem. Sci. 2022, 13, 10260.
- 24K. M. Ok, Acc. Chem. Res. 2016, 49, 2774.
- 25C. Zhao, J. Liu, B. Li, D. Ren, X. Chen, J. Yu, Q. Zhang, Adv. Funct. Mater. 2020, 30, 2003619.
- 26J. Guo, J. Huang, A. Tudi, X. Hou, S. Han, Z. Yang, S. Pan, Angew. Chem., Int. Ed. 2023, 62, 202304238.
- 27C. Hu, X. Cai, M. Wu, Z. Yang, J. Han, S. Pan, Chem. Mater. 2022, 34, 4224.
- 28M. Gai, T. Tong, Y. Wang, Z. Yang, S. Pan, Chem. Mater. 2020, 32, 5723.
- 29Y. Deng, L. Huang, X. Dong, L. Wang, K. M. Ok, H. Zeng, Z. Lin, G. Zou, Angew. Chem., Int. Ed. 2020, 59, 21151.
- 30Y. Yang, Y. Xiao, B. Li, Y. Chen, P. Guo, B. Zhang, X. Zhang, J. Am. Chem. Soc. 2023, 145, 22577.
- 31X. Dong, L. Huang, H. Zeng, Z. Lin, K. Ok, G. Zou, Angew. Chem., Int. Ed. 2022, 61, 202116790.
- 32B. Wu, C. Hu, F. Mao, R. Tang, J. Mao, J. Am. Chem. Soc. 2019, 141, 10188.
- 33M. Mutailipu, J. Han, Z. Li, F. Li, J. Li, F. Zhang, X. Long, Z. Yang, S. Pan, Nat. Photonics 2023, 17, 694.
- 34C. Hu, M. Wu, M. Zhang, J. Han, X. Hou, F. Zhang, Z. Yang, S. Pan, Adv. Opt. Mater. 2023, 11, 2300579.
- 35M. Cheng, W. Jin, Z. Yang, S. Pan, Chem. Sci. 2022, 13, 13482.
- 36J. Song, C. Hu, X. Xu, F. Kong, J. Mao, Angew. Chem., Int. Ed. 2015, 54, 3679.
- 37M. Mutailipu, K. R. Poeppelmeier, S. Pan, Chem. Rev. 2021, 121, 1130.
- 38J. Lu, Y. Lian, L. Xiong, Q. Wu, M. Zhao, K. Shi, L. Chen, L. Wu, J. Am. Chem. Soc. 2019, 141, 16151.
- 39S. Liu, X. Jiang, L. Qi, Y. Hu, K. Duanmu, C. Wu, Z. Lin, Z. Huang, M. G. Humphrey, C. Zhang, Angew. Chem., Int. Ed. 2024, 63, 202403328.
- 40V. P. Solntsev, E. G. Tsvetkov, V. A. Gets, V. D. Antsygin, J. Cryst. Growth 2002, 236, 290.
- 41M. Luo, N. Ye, G. Zou, C. Lin, W. Cheng, Chem. Mater. 2013, 25, 3147.
- 42T. T. Tran, J. He, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2015, 137, 10504.
- 43T. T. Tran, J. Young, J. M. Rondinelli, P. S Halasyamani, J. Am. Chem. Soc. 2017, 139, 1285.
- 44G. Zou, N. Ye, L. Huang, X. Lin, J. Am. Chem. Soc. 2011, 133, 20001.
- 45F. Ding, W. Zhang, M. L. Nisbet, W. Zhang, P. S. Halasyamani, Z. Yang, S. Pan, K. R. Poeppelmeier, Inorg. Chem. 2020, 59, 759.
- 46A. Abouimrane, I. J. Davidson, J. Electrochem. Soc. 2007, 154, A1031.
- 47J. L. Allen, S. D. Han, P. D. Boyle, W. A. Henderson, J. Power Sources 2011, 196, 9737.
- 48W. Xu, C. A. Angell, Electrochem. Solid-State Lett. 2001, 4, E1.
- 49P. Y. Zavalij, S. Yang, Acta Crystallogr. B 2003, 59, 753.
- 50W. Cai, J. Chen, S. Pan, Z. Yang, Inorg. Chem. Front. 2022, 9, 1224.
- 51Y. Li, K. M. Ok, Cryst. Growth Des. 2022, 22, 5639.
- 52T. Tong, W. Zhang, Z. Yang, S. Pan, Angew. Chem., Int. Ed. 2021, 60, 1332.
- 53C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley, Hoboken, NJ, USA 2011.
- 54Y. Marcus, Ions in Solution and their Solvation, John Wiley & Sons, Hoboken, NJ, USA 2015.
10.1002/9781118892336 Google Scholar
- 55X. Li, M. X, Wang, L. Ma, W. Huang, Adv. Energy Mater. 2022, 12, 2202068.
- 56S. Ringe, N. G. Hörmann, H. Oberhofer, K. Reuter, Chem. Rev. 2022, 122, 10777.
- 57J. Tauc, Mater. Res. Bull. 1970, 5, 721.
- 58C. Chen, B. Wu, A. Jiang, G. You, Sci. Chin. B 1985, 28, 235.
- 59C. Jin, F. Li, X. Li, J. Lu, Z. Yang, S. Pan, M. Mutailipu, Chem. Mater. 2022, 34, 7516.
- 60M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian09, revision D.01, Gaussian, Inc.: Wallingford, CT 2009.
- 61M. Fuchs, M. Scheffler, Comput. Phys. Commun. 1999, 119, 67.
- 62J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B. 1992, 46, 6671.
- 63M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.: Condens. Matter 2002, 14, 2717.
- 64J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 65P. Deák, B. Aradi, T. Frauenheim, E. Janzén, A. Gali, Phys. Rev. B. 2010, 81, 153203.
- 66R. E. Dinnebier, S. Vensky, M. Panthöfer, M. Jansen, Inorg. Chem. 2003, 42, 1499.