d-Orbital Single Electron Filling O─O π* Bonds on WO3S1 Sites for Highly Selective Generation of Hydroxyl Radicals
Hui Li
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorTianhao Li
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorRan Zhao
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorHexiang Zhao
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorHaodong Ji
Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Fangyuan Chen
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhurui Shen
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sihui Zhan
College of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHui Li
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorTianhao Li
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorRan Zhao
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorHexiang Zhao
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
Search for more papers by this authorHaodong Ji
Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Fangyuan Chen
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhurui Shen
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, National Institute for Advanced Materials, Nankai University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Sihui Zhan
College of Environmental Science and Engineering, Tianjin University, Tianjin, 300350 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Hydroxyl radical (•OH) stemming from dissolved oxygen (O2) via photocatalysis is very attractive, but its poor selectivity and generation efficiency greatly limit its application. Herein, a kind of tungsten single site co-coordinated with O and S atoms (WO3S1) is established on ZnIn2S4 (W-ZIS). The strong interactions in WO3S1 shift the d-band center toward the Fermi level, enhancing the adsorption of O2. These interactions improve the accumulation of photo-generated electrons on WO3S1, facilitating the dissociation of O─O bonds in crucial intermediates and promoting the selective conversion from O2 into •OH. This brings a state-of-the-art selectivity (40.2%) and generation efficiency (1668.90 mmol. g−1. L−1. h−1) of •OH production. Experimental results and theoretical simulations have elucidated that O2 can be reduced by d-orbitals single electron (↑, _, _, _, _, _) of WO3S1 transfer to 2p-orbital O─O pi anti-bonding (π*: px and py), initially activating O2. Additionally, WO3S1 sites facilitate the cleavage of H2O, optimizing proton adsorption through W─O orbital coupling in WO3S1 and promoting the transformation of oxygen-containing intermediates. More importantly, d-orbitals single electron can fill O─O π* bond in •OOH intermediate, weakening the covalency of the O─O bond, mitigating the formation of H2O2 and shortening the pathway for •OH generation.).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202412234-sup-0001-SuppMat.docx12.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Wang, G. Yu, Y. Wang, S. Liu, J. Qiu, Y. Xu, Z. Wang, Y. Wang, Y. Xie, H. Cao, Adv. Funct. Mater. 2023, 33, 2215245.
- 2L. Tian, Z. J. Tang, L. Y. Hao, T. Dai, J. P. Zou, Z. Q. E. Liu, Angew. Chem., Int. Ed. 2024, 136, 202401434.
- 3C. L. Heald, J. H. Kroll, Science 2021, 374, 688.
- 4A. K. Shaytan, H. Xiao, G. A. Armeev, D. A. Gaykalova, G. A. Komarova, C. Wu, M. S. Vasily, L. David, A. R. Panchenko, Nat. Protoc. 2018, 13, 2535.
- 5P. Niu, L. Zhang, G. Liu, H. Cheng, Adv. Funct. Mater. 2012, 22, 4763.
- 6Y. Jing, B. P. Chaplin, Environ. Sci. Technol. 2017, 51, 2355.
- 7Y. Zheng, Z. Yu, H. Ou, A. Asiri, Y. Chen, X. Wang, Adv. Funct. Mater. 2018, 28, 1705407.
- 8Y. Huang, J. Zou, J. Lin, H. Yang, M. Wang, J. Li, W. Cao, B. Yuan, J. Ma, Environ. Sci. Technol. 2022, 57, 18420.
- 9Y. Song, C. Zhao, T. Wang, Z. Kong, L. Zheng, H. Ding, H. Zheng, Water Res. 2021, 189, 116623.
- 10S. Gligorovski, R. Strekowski, S. Barbati, D. E. Vione, Chem. Rev. 2015, 115, 13051.
- 11L. Wang, B. Li, D. D. Dionysiou, B. Chen, J. Yang, J. Li, Environ. Sci. Technol. 2022, 56, 3386.
- 12F. Xiao, Z. Wang, J. Fan, T. Majima, H. Zhao, G. Zhao, Angew. Chem., Int. Ed. 2021, 60, 10375.
- 13H. Zhan, Q. Zhou, M. Li, R. Zhou, Y. Mao, P. Wang, Appl. Catal. B Environ. 2022, 310, 121329.
- 14B. Feng, Y. Liu, K. Wan, S. Zu, Y. Pei, X. Zhang, M. Qiao, H. Li, B. Zong, Angew. Chem., Int. Ed. 2024, 63, 202401884.
- 15C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175.
- 16K. Chen, J. Wang, H. Zhang, D. Ma, K. Chu, Nano Lett. 2023, 23, 1735.
- 17Y. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. Xiong, Adv. Mater. 2021, 33, 2100429.
- 18Y. Feng, C. Wang, P. Cui, C. Li, B. Zhang, L. Gan, S. Zhang, X. Zhang, X. Zhou, Z. Sun, K. Wang, Y. Duan, H. Li, K. Zhou, H. Huang, A. Li, C. Zhuang, L. Wang, Z. Zhang, X. Han, Adv. Mater. 2022, 34, 2109074.
- 19P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng, S. Xiong, Angew. Chem., Int. Ed. 2021, 133, 15691.
- 20F. Zhang, Y. Zhu, C. Tang, Y. Chen, B. Qian, Z. Hu, Y. Chang, C. Pao, Q. Lin, S. A. Kazemi, Y. Wang, L. Zhang, X. Zhang, H. Wang, Adv. Funct. Mater. 2022, 32, 2110224.
- 21Y. Wang, X. Li, M. Zhang, J. Zhang, Z. Chen, X. Zheng, Z. Tian, N. Zhao, X. Han, K. Zaghib, Y. Wang, Y. Deng, W. Hu, Adv. Mater. 2022, 34, 2107053.
- 22Y. Wang, J. Zhang, W. X. Shi, G. L. Zhuang, Q. P. Zhao, J. Ren, P. Zhang, H. Yin, T. Lu, Z. M. Zhang, Adv. Mater. 2022, 34, 2204448.
- 23Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng, Z. Wang, W. Zhang, J. Ma, H. Yu, G. Li, W. Lu, W. Ren, Z. Zhao, Nano Energy 2019, 60, 394.
- 24J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S. Lee, T. Ma, Nat. Commun. 2019, 10, 2149.
- 25F. Chen, W. Sun, D. Zhang, F. Guo, S. Zhan, Z. Shen, Adv. Mater. 2022, 34, 2108504.
- 26X. Shi, C. Dai, X. Wang, J. Hu, J. Zhang, L. Zheng, L. Mao, H. Zheng, M. Zhu, Nat. Commun. 2022, 13, 1287.
- 27J. Wang, C. Hsu, T. Wu, T. Chan, N. Suen, J. Lee, H. Chen, Nat. Commun. 2023, 14, 6576.
- 28S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu, D. Wang, W. Zhang, Y. Lin, J. Lu, S. Wei, Y. Li, T. Yao, Nat. Commun. 2020, 11, 1029.
- 29H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 2019, 48, 5207.
- 30X. Zeng, Z. Wang, G. Wang, T. R. Gengenbach, D. McCarthy, A. Deletic, J. Yu, X. Zhang, Appl. Catal. B Environ. 2017, 218, 163.
- 31J. Lee, A. Kumar, M. Kim, T. Yang, X. Shao, X. Liu, Y. Liu, Y. Hong, A. Jadhav, M. Liang, N. Tran, H. Lee, ACS Energy Lett. 2021, 6, 4299.
- 32T. Li, M. Ruan, Z. Guo, C. Wang, Z. Liu, ACS Appl. Mater. Interfaces 2023, 15, 11914.
- 33D. Cao, H. Xu, H. Li, C. Feng, J. Zeng, D. Cheng, Nat. Commun. 2022, 13, 5843.
- 34D. Cao, Z. Zhang, Y. Cui, R. Zhang, L. Zhang, J. Zeng, D. Cheng, Angew. Chem., Int. Ed. 2023, 135, 202214259.
- 35Z. Qiao, R. Jiang, H. Xu, D. Cao, X. C. Zeng, Angew. Chem., Int. Ed. 2024, 63, 202407812.
- 36Y. Cui, C. Ren, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 2024, 146, 15640.
- 37J. C. Liu, F. Luo, J. Li, J. Am. Chem. Soc. 2023, 145, 25264.
- 38Y. Li, H. Sun, L. Ren, K. Sun, L. Gao, X. Jin, Q. Xu, W. Liu, X. Sun, Angew. Chem., Int. Ed. 2024, 63, 202405334.
- 39J. Yu, J. Li, C. Y. Xu, Q. Li, Q. Liu, J. Liu, R. Chen, J. Zhu, J. Wang, Nano Energy 2022, 98, 107266.
- 40Y. Li, H. Zhou, S. Cai, D. Prabhakaran, W. Niu, A. Large, G. Held, R. Taylor, X. Wu, S. Tsang, Nat. Catal. 2024, 1.
- 41S. Dong, Y. Dong, B. Liu, S. Liu, Z. Zhao, W. Li, B. Tian, R. Zhao, F. He, S. Gai, Y. Xie, P. Yang, Y. Zhao, Adv. Mater. 2022, 34, 2107054.
- 42M. Tong, F. Sun, G. Xing, C. Tian, L. Wang, H. Fu, Angew. Chem., Int. Ed. 2023, 62, 202314933.
- 43C. He, C. H. Lee, L. Meng, H. Y. T. Chen, Z. Li, J. Am. Chem. Soc. 2024, 146, 12395.
- 44S. Yao, Y. Ji, S. Wang, Y. Liu, Z. Hou, J. Wang, X. Gao, W. Fu, K. Nie, J. Xie, Z. Yang, Y. Yan, Angew. Chem., Int. Ed. 2024, 136, 202404834.
- 45Q. Guan, C. Zhu, Y. Lin, E. I. Vovk, X. Zhou, Y. Yang, J. Lu, Nat. Catal. 2021, 4, 840.
- 46C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem., Int. Ed. 2023, 62, 202218688.
- 47S. Mondal, D. Bagchi, M. Riyaz, S. Sarkar, A. Singh, C. Vinod, S. Peter, J. Am. Chem. Soc. 2022, 144, 11859.
- 48Y. Shi, H. Shou, H. Li, G. Zhan, X. Liu, Z. Yang, C. Mao, J. Cheng, X. Zhang, Y. Jiang, S. Zhao, J. Wang, X. Liu, L. Song, H. Sun, L. Zhang, Angew. Chem., Int. Ed. 2023, 135, 202302286.
- 49K. Kunimatsu, T. Yoda, D. A. Tryk, H. Uchida, M. Watanabe, Phys. Chem. Chem. Phys. 2010, 12, 621.
- 50S. Szczepankiewicz, A. Colussi, M. R. Hoffmann, J. Phys. Chem. B. 2000, 104, 9842.
- 51W. Liu, Y. Wang, H. Huang, J. Wang, G. He, J. Feng, Z. Zou, J. Am. Chem. Soc. 2023, 145, 7181.
- 52H. Sun, Z. Wang, C. Wang, Y. Shao, Y. Zhang, C. Chen, C. Pan, J. Catal. 2023, 428, 115172.
- 53L. Chen, J. Duan, P. Du, W. Sun, B. Lai, W. Liu, Water Res. 2022, 221, 118747.