Amorphous Ni(OH)2 Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation
Shaojian Jiang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorYuhang Liu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorRuidong Yang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorLijun Zhang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorWenke Liu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorKai Deng
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorCorresponding Author
Hongjie Yu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongjing Wang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Wang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorShaojian Jiang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorYuhang Liu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorRuidong Yang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorLijun Zhang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorWenke Liu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorKai Deng
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
Search for more papers by this authorCorresponding Author
Hongjie Yu
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hongjing Wang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Wang
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Since formaldehyde oxidation reaction (FOR) can release H2, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)2/CF) is prepared. The modification of Ni(OH)2 resulted in hydrophilic and aerophobic states on the Cu@Ni(OH)2/CF surface, facilitating the transport of liquid-phase species on the electrode surface and accelerating the release of H2. The Open circuit potential (OCP) and density functional theory (DFT) calculations indicate that this core–shell structure facilitates the adsorption of HCHO and OH−. In addition, the catalytic mechanism and reaction pathway of FOR are investigated through in situ FTIR and DFT calculations, and the results showed that the modification of Ni(OH)2 lowered the energy barrier for C─H bond breaking and H─H bond formation. In the HER//FOR system, Pt/C//Cu@Ni(OH)2/CF can provide a current density of 0.5 A cm−2 at 0.36 V and achieve efficient and stable H2 production. This work offers new ideas for designing electrocatalysts for bipolar hydrogen production system assisted with formaldehyde oxidation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202410478-sup-0001-SuppMat.docx22.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) T. Zhao, M. Li, D. Xiao, X. Yang, L. An, Z. Deng, T. Shen, M. Gong, Y. Chen, H. Liu, L. Feng, X. Yang, L. Li, D. Wang, Angew. Chem., Int. Ed. 2023, 63, 202315148; b) X. L. Liu, Y. C. Jiang, J. T. Huang, W. Zhong, B. He, P. J. Jin, Y. Chen, Carbon Energy 2023, 5, 367; c) Z. Zhou, Y. H. Ng, S. Xu, S. Yang, Q. Gao, X. Cai, J. Liao, Y. Fang, S. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 37299; d) J. Chen, H. Ren, K. Wu, H. Fang, C. Chen, L. Lin, Y. Luo, L. Jiang, Chin. J. Struct. Chem. 2024, 43, 100236.
- 2a) X. Fu, D. Cheng, C. Wan, S. Kumari, H. Zhang, A. Zhang, H. Huyan, J. Zhou, H. Ren, S. Wang, Z. Zhao, X. Zhao, J. Chen, X. Pan, P. Sautet, Y. Huang, X. Duan, Adv. Mater. 2023, 35, 2301533; b) Z. Li, G. Lin, L. Wang, H. Lee, J. Du, T. Tang, G. Ding, R. Ren, W. Li, X. Cao, S. Ding, W. Ye, W. Yang, L. Sun, Nat. Catal. 2024, 7, 944; c) G. Qian, J. Chen, W. Jiang, T. Yu, K. Tan, S. Yin, Carbon Energy 2023, 5, 368.
- 3a) M. K. Goetz, M. T. Bender, K.-S. Choi, Nat. Commun. 2022, 13, 5848; b) R. Ge, Y. Wang, Z. Li, M. Xu, S. M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem., Int. Ed. 2022, 61, 202200211; c) J. Lin, X. Wang, Z. Zhao, D. Chen, R. Liu, Z. Ye, B. Lu, Y. Hou, J. Lu, Carbon Energy 2024, 6, 555.
- 4a) L. Zeng, Y. Chen, M. Sun, Q. Huang, K. Sun, J. Ma, J. Li, H. Tan, M. Li, Y. Pan, Y. Liu, M. Luo, B. Huang, S. Guo, J. Am. Chem. Soc. 2023, 145, 17577; b) P. Zhou, X. Lv, S. Tao, J. Wu, H. Wang, X. Wei, T. Wang, B. Zhou, Y. Lu, T. Frauenheim, X. Fu, S. Wang, Y. Zou, Adv. Mater. 2022, 34, 2204089; c) K. Deng, Z. Lian, W. Wang, J. Yu, H. Yu, Z. Wang, Y. Xu, L. Wang, H. Wang, Small 2023, 20, 2305000.
- 5a) Y. Q. Zhu, H. Zhou, J. Dong, S. M. Xu, M. Xu, L. Zheng, Q. Xu, L. Ma, Z. Li, M. Shao, H. Duan, Angew. Chem., Int. Ed. 2023, 62, 202219048; b) W.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, G. W. Huber, H.-Q. Yu, Nat. Commun. 2020, 11, 265.
- 6a) K. Qian, Y. Yan, S. Xi, T. Wei, Y. Dai, X. Yan, H. Kobayashi, S. Wang, W. Liu, R. Li, Small 2021, 17, 2102970; b) Z. Zhou, M. Wei, G. Yang, W. Du, F. Peng, Y. Fang, Y. Liu, S. Zhang, R. Qiu, J. Alloys Compd. 2023, 936, 168360.
- 7a) H. Yu, S. Jiang, W. Zhan, Y. Liang, K. Deng, Z. Wang, Y. Xu, H. Wang, L. Wang, Chem. Eng. J. 2023, 475, 146210; b) T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen, S. Du, Y. Zhou, B. Zhou, D. Wang, C. Xie, P. Long, W. Li, Y. Wang, R. Chen, Y. Zou, X.-Z. Fu, Y. Li, X. Duan, S. Wang, Nat. Catal. 2021, 5, 66.
- 8a) Y. Zhang, J. Wu, X. Zhu, Z. Ren, J. Chen, Appl. Catal. B: Environ. 2024, 354, 124093; b) M. Li, T. Wang, W. Zhao, S. Wang, Y. Zou, Nano-Micro Lett. 2022, 14, 211.
- 9G. Li, G. Han, L. Wang, X. Cui, N. K. Moehring, P. R. Kidambi, D.-e. Jiang, Y. Sun, Nat. Commun. 2023, 14, 525.
- 10Y. Pan, Y. Li, C.-L. Dong, Y.-C. Huang, J. Wu, J. Shi, Y. Lu, M. Yang, S. Wang, Y. Zou, Chem 2023, 9, 963.
- 11L. Xiao, W. Dai, S. Mou, X. Wang, Q. Cheng, F. Dong, Energy Environ. Sci. 2023, 16, 2696.
- 12a) X. Lyu, Y. Jia, X. Mao, D. Li, G. Li, L. Zhuang, X. Wang, D. Yang, Q. Wang, A. Du, X. Yao, Adv. Mater. 2020, 32, 2003493; b) B. Hu, Y. Xie, Y. Yang, J. Meng, J. Cai, C. Chen, D. Yu, X. Zhou, Appl. Catal. B: Environ. 2023, 324, 122257; c) P. F. Guo, Y. Yang, B. Zhu, Q. N. Yang, Y. Jia, W. T. Wang, Z. T. Liu, S. Q. Zhao, X. Cui, Carbon Energy 2024, 6, 532.
- 13a) H. An, X. Mu, G. Tan, P. Su, L. Liu, N. Song, S. Bai, C. H. Yan, Y. Tang, Small 2024, 20, 2311505; b) Z. Peng, Q. Zhang, G. Qi, H. Zhang, Q. Liu, G. Hu, J. Luo, X. Liu, Chin. J. Struct. Chem. 2024, 43, 100191.
- 14a) Y. Liu, T. Sakthivel, F. Hu, Y. Tian, D. Wu, E. H. Ang, H. Liu, S. Guo, S. Peng, Z. Dai, Adv. Energy Mater. 2023, 13, 2203797; b) Y. Song, X. Zhang, Z. Xiao, Y. Wang, P. Yi, M. Huang, L. Zhang, Appl. Catal. B-Environ. Energy 2024, 352, 124028.
- 15D. He, G. Huang, J. Hu, J. Ding, W. Liu, L. Chen, W. Yan, J. Zhu, S. Zhu, Q. Chen, X. Jiao, Y. Xie, Adv. Energy Mater. 2024, 2402889.
- 16Y. Zhu, C. Liu, S. Cui, Z. Lu, J. Ye, Y. Wen, W. Shi, X. Huang, L. Xue, J. Bian, Y. Li, Y. Xu, B. Zhang, Adv. Mater. 2023, 35, 2301549.
- 17H. Liang, A. N. Gandi, C. Xia, M. N. Hedhili, D. H. Anjum, U. Schwingenschlögl, H. N. Alshareef, ACS Energy Lett. 2017, 2, 1035.
- 18H. Shi, T. Wang, J. Liu, W. Chen, S. Li, J. Liang, S. Liu, X. Liu, Z. Cai, C. Wang, D. Su, Y. Huang, L. Elbaz, Q. Li, Nat. Commun. 2023, 14, 3934.
- 19L. Li, P. C. M. Laan, X. Yan, X. Cao, M. J. Mekkering, K. Zhao, L. Ke, X. Jiang, X. Wu, L. Li, L. Xue, Z. Wang, G. Rothenberg, N. Yan, Adv. Sci. 2022, 10, 2206180.
- 20J. Shen, B. Li, Y. Zheng, Z. Dai, J. Li, X. Bao, J. Guo, X. Yu, Y. Guo, M. Ge, W. Lei, H. Shao, Chem. Eng. J. 2022, 433, 133517.
- 21Z. Yu, J. Xie, T. Ren, H. Yu, K. Deng, Z. Wang, H. Wang, L. Wang, Y. Xu, Inorg. Chem. 2023, 62, 16228.
- 22L. Li, H. Sun, X. Xu, M. Humayun, X. Ao, M. F. Yuen, X. Xue, Y. Wu, Y. Yang, C. Wang, ACS Appl. Mater. Interfaces 2022, 14, 50783.
- 23J. Liu, G. Qian, T. Yu, J. Chen, C. Zhu, Y. Li, J. He, L. Luo, S. Yin, Chem. Eng. J. 2022, 431, 134247.
- 24M. Fang, M. Wang, Z. Wang, Z. Zhang, H. Zhou, L. Dai, Y. Zhu, L. Jiang, J. Am. Chem. Soc. 2023, 145, 11323.
- 25C. Liu, X. R. Shi, K. Yue, P. Wang, K. Zhan, X. Wang, B. Y. Xia, Y. Yan, Adv. Mater. 2023, 35, 202211177.
- 26a) X. Zhang, X. Liu, Z.-F. Huang, L. Guo, L. Gan, S. Zhang, M. Ajmal, L. Pan, C. Shi, X. Zhang, G. Yang, J.-J. Zou, ACS Catal. 2023, 13, 14670; b) D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier, P. Marcus, M. Fontecave, V. Mougel, Nat. Mater. 2019, 18, 1222.
- 27G. Liu, T. Nie, Z. Song, X. Sun, T. Shen, S. Bai, L. Zheng, Y. F. Song, Angew. Chem., Int. Ed. 2023, 62, 202311696.
- 28H. Yu, L. Zhang, S. Jiang, W. Liu, K. Deng, Z. Wang, Y. Xu, H. Wang, L. Wang, Small 2024, 20, 2406107.
- 29J. Wu, Z. Kong, Y. Li, Y. Lu, P. Zhou, H. Wang, L. Xu, S. Wang, Y. Zou, ACS Nano 2022, 16, 21518.
- 30M. Yang, Y. Li, C. L. Dong, S. Li, L. Xu, W. Chen, J. Wu, Y. Lu, Y. Pan, Y. Wu, Y. Luo, Y. C. Huang, S. Wang, Y. Zou, Adv. Mater. 2023, 35, 2304203.
- 31H. Yu, W. Wang, Q. Mao, K. Deng, Z. Wang, Y. Xu, X. Li, H. Wang, L. Wang, Appl. Catal. B: Environ. 2023, 330, 122617.
- 32H. Zhou, Y. Ren, B. Yao, Z. Li, M. Xu, L. Ma, X. Kong, L. Zheng, M. Shao, H. Duan, Nat. Commun. 2023, 14, 5621.
- 33Y. Lin, K. Shi, Y. Yang, Z. Yang, W. Zhang, Chem. Eng. Sci. 2023, 281, 119125.
- 34Z. Gong, P. Chen, H. Gong, K. Huang, G. Ye, H. Fei, Adv. Mater. 2024, 36, 2409292.
- 35Y. Yang, D. Xu, B. Zhang, Z. Xue, T. Mu, Chem. Eng. J. 2022, 433, 133842.
- 36D. Xiao, X. Bao, D. Dai, Y. Gao, S. Si, Z. Wang, Y. Liu, P. Wang, Z. Zheng, H. Cheng, Y. Dai, B. Huang, Adv. Mater. 2023, 35, 2304133.