Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing
Li-Dong Chen
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorDi Zhang
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorZi-Hui Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorZhao Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorCorresponding Author
Shenglin Cai
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuo-Hui Cao
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Department of Electronic Science, Xiamen University, Xiamen, 361005 P. R. China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yao-Qun Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorLi-Dong Chen
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorDi Zhang
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorZi-Hui Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorZhao Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorCorresponding Author
Shenglin Cai
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuo-Hui Cao
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
Department of Electronic Science, Xiamen University, Xiamen, 361005 P. R. China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yao-Qun Li
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at “hotspots” locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement. Upon binding with the target analyte, the sensor produces homologous yet independent optoelectronic dual-signal responses that cross-validate one another, providing highly accurate analysis even in the presence of multiple interferences. The platform demonstrates precise, adaptable detection with linear responses to extracellular pH changes at the single-cell level, making it a versatile tool for a range of biosensing applications. By enabling the functionalization of fluorescent interfaces in the “hotspots” of metal nanopores, this interface design strategy efficiently exploits the enhancement of electromagnetic fields to achieve high-precision dual-signal measurements and greatly improves the sensitivity of biosensing applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202410237-sup-0001-SuppMat.docx2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) K. L. Chen, R. J. Yu, C. B. Zhong, Z. Wang, B. K. Xie, H. Ma, M. Ao, P. Zheng, A. G. Ewing, Y. T. Long, Angew. Chem., Int. Ed. 2024, 63, 202406677; b) R. Wu, Y. Wang, J. Yu, H. Li, C. Yu, H. Wang, M. Wang, B. Li, Angew. Chem., Int. Ed. 2023, 62, 202304891; c) L. D. Chen, Y. Y. Wu, D. Zhang, S. H. Cao, L. T. Xu, Y. Q. Li, Chem.–An Asian J. 2022, 17, 202200884; d) Y.-Y. Wu, L.-D. Chen, X.-H. Cai, Y. Zhao, M. Chen, X.-H. Pan, Y.-Q. Li, ACS Appl. Mater. Interfaces 2021, 13, 25241.
- 2a) B. S. Sheetz, J. R. Dwyer, Rev. Sci. Instrum. 2023, 94, 104101; b) P. Hu, Y. Zhang, D. Wang, G. Qi, Y. Jin, Anal. Chem. 2021, 93, 4240; c) C. Wang, X. P. Zhao, F. F. Liu, Y. Chen, X. H. Xia, J. Li, Nano Lett. 2020, 20, 1846; d) Z. Zhu, D. Wang, Y. Tian, L. Jiang, J. Am. Chem. Soc. 2019, 141, 8658; e) L. Liu, Y. You, K. Zhou, B. Guo, Z. Cao, Y. Zhao, H. C. Wu, Angew. Chem., Int. Ed. 2019, 58, 14929.
- 3a) T. Zheng, Y. Zhu, A. Zhu, Electroanalysis 2021, 34, 326; b) X. Xu, R. Hou, P. Gao, M. Miao, X. Lou, B. Liu, F. Xia, Anal. Chem. 2016, 88, 2386.
- 4a) G. Ando, C. Hyun, J. Li, T. Mitsui, ACS Nano 2012, 6, 10090; b) J. P. Fried, Y. Wu, R. D. Tilley, J. J. Gooding, Nano Lett. 2022, 22, 869.
- 5a) A. J. Carrod, F. Graglia, L. Male, C. Le Duff, P. Simpson, M. Elsherif, Z. Ahmed, H. Butt, G. X. Xu, K. Kam-Wing Lo, P. Bertoncello, Z. Pikramenou, Chemistry 2022, 28, 202103541; b) H. Liu, Q. Jiang, J. Pang, Z. Jiang, J. Cao, L. Ji, X. Xia, K. Wang, Adv. Funct. Mater. 2018, 28, 1703847.
- 6a) S.-C. Liu, B.-K. Xie, C.-B. Zhong, J. Wang, Y.-L. Ying, Y.-T. Long, Rev. Sci. Instrum. 2021, 92, 121301; b) S. Cai, T. Pataillot-Meakin, A. Shibakawa, R. Ren, C. L. Bevan, S. Ladame, A. P. Ivanov, J. B. Edel, Nat. Commun. 2021, 12, 3515; c) S. Ding, C. Liu, D. Fu, G. Shi, A. Zhu, Anal. Chem. 2021, 93, 1779; d) S. Cai, J. Y. Y. Sze, A. P. Ivanov, J. B. Edel, Nat. Commun. 2019, 10, 1797.
- 7a) D. V. Lebedev, N. V. Vaulin, P. K. Afonicheva, A. A. Vorobyov, A. M. Mozharov, V. A. Sharov, V. Y. Mikhailovskii, D. A. Kirilenko, D. V. Permyakov, L. S. Logunov, Y. D. Ivanov, I. I. Ryzhkov, A. S. Bukatin, A. A. Evstrapov, S. V. Makarov, I. S. Mukhin, ACS Appl. Nano Mater. 2024, 14, 16172;
10.1021/acsanm.4c02108 Google Scholarb) L.-T. Xu, K.-X. Xie, S.-H. Cao, Y.-H. Weng, M. Chen, Z. Li, Y.-Q. Li, Chin. Chem. Lett. 2023, 34, 108181; c) H.-W. Wang, S.-M. Lu, M. Chen, Y.-T. Long, Curr. Opin. Electrochem. 2022, 34, 100999; d) Y. Zhao, S. H. Cao, J. D. Wang, N. Li, G. C. Lin, Y. Q. Li, Adv. Opt. Mater. 2022, 10, 2101973; e) J. D. Spitzberg, A. Zrehen, X. F. van Kooten, A. Meller, Adv. Mater. 2019, 31, 1900422; f) S.-H. Cao, W.-P. Cai, Q. Liu, K.-X. Xie, Y.-H. Weng, S.-X. Huo, Z.-Q. Tian, Y.-Q. Li, J. Am. Chem. Soc. 2014, 136, 6802.
- 8a) W. Li, J. Zhou, Q. Lan, X.-L. Ding, X.-T. Pan, S. A. Ahmed, L.-N. Ji, K. Wang, X.-H. Xia, Nano Lett. 2023, 23, 2586; b) Y. Zhao, A. Hubarevich, A. F. De Fazio, M. Iarossi, J.-A. Huang, F. De Angelis, Nano Lett. 2023, 23, 4830; c) J. Zhou, Q. Lan, W. Li, L.-N. Ji, K. Wang, X.-H. Xia, Nano Lett. 2023, 23, 2800; d) N. Kong, J. Guo, S. Chang, J. Pan, J. Wang, J. Zhou, J. Liu, H. Zhou, F. M. Pfeffer, J. Liu, C. J. Barrow, J. He, W. Yang, J. Am. Chem. Soc. 2021, 143, 9781; e) J. A. Huang, M. Z. Mousavi, G. Giovannini, Y. Zhao, A. Hubarevich, M. A. Soler, W. Rocchia, D. Garoli, F. De Angelis, Angew. Chem., Int. Ed. 2020, 59, 11423; f) M. Belkin, S.-H. Chao, M. P. Jonsson, C. Dekker, A. Aksimentiev, ACS Nano 2015, 9, 10598.
- 9O. N. Assad, T. Gilboa, J. Spitzberg, M. Juhasz, E. Weinhold, A. Meller, Adv. Mater. 2017, 29, 1605442.
- 10a) C. de Blois, M. Engel, M.-A. Rejou, B. Molcrette, A. Favier, F. Montel, Nanoscale 2024, 16, 138;
10.1039/D3NR04915A Google Scholarb) M. F. Nüesch, M. T. Ivanović, J.-B. Claude, D. Nettels, R. B. Best, J. Wenger, B. Schuler, J. Am. Chem. Soc. 2022, 144, 52; c) N. Klughammer, C. Dekker, Nanotechnology 2021, 32, 18LT01.
- 11Y. Jeong, Y. M. Kook, K. Lee, W. G. Koh, Biosens. Bioelectron. 2018, 111, 102.
- 12B. Zhang, J. Galusha, P. G. Shiozawa, G. Wang, A. J. Bergren, R. M. Jones, R. J. White, E. N. Ervin, C. C. Cauley, H. S. White, Anal. Chem. 2007, 79, 4778.
- 13a) S. Poorahong, W. Oin, S. Buapoon, S. Nijpanich, D. J. Harding, M. Siaj, RSC Adv. 2024, 14, 14616; b) Y. Zhu, M. Zhu, Q. Zhou, Q. Shu, K. Tan, Spectrochim. Acta, Part A 2024, 320, 124648.
- 14a) Q. Jia, R. Zhang, H. Yan, Y. Feng, F. Sun, Z. Yang, C. Qiao, X. Mou, J. Tian, Z. Wang, Angew. Chem., Int. Ed. 2023, 62, 202313420; b) C. Kromer, A. Katz, I. Feldmann, P. Laux, A. Luch, H. R. Tschiche, Sci. Rep. 2024, 14, 12302.
- 15a) Y. Gao, B. Yin, X. Liu, S. Wu, Anal. Chem. 2024, 96, 2087; b) Q. Xiong, R. Song, T. Wu, F. Zhang, P. He, J. Electroanal. Chem. 2021, 887, 115169; c) G. Qi, H. Li, Y. Zhang, C. Li, S. Xu, M. Wang, Y. Jin, Anal. Chem. 2019, 91, 1408.
- 16a) M. Chen, X.-H. Pan, Q. Liu, S.-X. Huo, S.-H. Cao, Y.-Y. Zhai, Y. Zhao, Y.-Q. Li, Anal. Chem. 2019, 91, 13658; b) S. H. Cao, W. P. Cai, Q. Liu, K. X. Xie, Y. H. Weng, Y. Q. Li, Chem. Commun. 2014, 50, 518; c) J. Deng, M. Sun, J. Zhu, C. Gao, Nanoscale 2013, 5, 8130; d) Y. Qi, B. Li, Spectrochim. Acta, Part A 2013, 111, 1.