Highly Efficient MAPbI3-Based Quantum Dots Exhibiting Unusual Nonblinking Single Photon Emission at Room Temperature
Yung-Tang Chuang
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorTzu-Yu Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorGuang-Hsun Tan
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorPei-En Jan
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHao-Cheng Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHung-Ming Chen
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorKai-Yuan Hsiao
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorBo-Han Chen
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChih-Hsuan Lu
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChi-Hsuan Lee
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319 Taiwan
Search for more papers by this authorChun-Wei Pao
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
Search for more papers by this authorShang-Da Yang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorMing-Yen Lu
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Hao-Wu Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
E-mail: [email protected]
Search for more papers by this authorYung-Tang Chuang
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorTzu-Yu Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorGuang-Hsun Tan
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorPei-En Jan
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHao-Cheng Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHung-Ming Chen
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorKai-Yuan Hsiao
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorBo-Han Chen
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChih-Hsuan Lu
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorChi-Hsuan Lee
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319 Taiwan
Search for more papers by this authorChun-Wei Pao
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
Search for more papers by this authorShang-Da Yang
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorMing-Yen Lu
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorCorresponding Author
Hao-Wu Lin
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
E-mail: [email protected]
Search for more papers by this authorAbstract
Highly emissive semiconductor nanocrystals, or so-called quantum dots (QDs) possess a variety of applications from displays and biology labeling, to quantum communication and modern security. Though ensembles of QDs have already shown very high photoluminescent quantum yields (PLQYs) and have been widely utilized in current optoelectronic products, QDs that exhibit high absorption cross-section, high emission intensity, and, most important, nonblinking behavior at single-dot level have long been desired and not yet realized at room temperature. In this work, infrared-emissive MAPbI3-based halide perovskite QDs is demonstrated. These QDs not only show a ≈100% PLQY at the ensemble level but also, surprisingly, at the single-dot level, display an extra-large absorption cross-section up to 1.80 × 10−12 cm2 and non-blinking single photon emission with a high single photon purity of 95.3%, a unique property that is extremely rare among all types of quantum emitters operated at room temperature. An in-depth analysis indicates that neither trion formation nor band-edge carrier trapping is observed in MAPbI3 QDs, resulting in the suppression of intensity blinking and lifetime blinking. Fluence-dependent transient absorption measurements reveal that the coexistence of non-blinking behavior and high single photon purity in these perovskite QDs results from a significant repulsive exciton-exciton interaction, which suppresses the formation of biexciton, and thus greatly reduces photocharging. The robustness of these QDs is confirmed by their excellent stability under continuous 1 h electron irradiation in high-resolution transmission electron microscope inspection. It is believed that these results mark an important milestone in realizing nonblinking single photon emission in semiconductor QDs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308676-sup-0001-SuppMat.pdf4.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Palomaki, IEEE Spectrum 2022, 59, 52.
- 2J. Sobhanan, J. V. Rival, A. Anas, E. Sidharth Shibu, Y. Takano, V. Biju, Adv. Drug Delivery 2023, 197, 114830.
- 3T. Hu, J. Xu, Y. Ye, Y. Han, X. Li, Z. Wang, D. Sun, Y. Zhou, Z. Ni, Biosens. Bioelectron. 2019, 136, 112.
- 4J.-P. Li, X. Gu, J. Qin, D. Wu, X. You, H. Wang, C. Schneider, S. Höfling, Y.-H. Huo, C.-Y. Lu, N.-L. Liu, L. Li, J.-W. Pan, Phys. Rev. Lett. 2021, 126, 140501.
- 5C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, H. Htoon, Nature 2011, 479, 203.
- 6Y. He, J. Chen, R. Liu, Y. Weng, C. Zhang, Y. Kuang, X. Wang, L. Guo, X. Ran, ACS Appl. Mater. Interfaces 2022, 14, 12901.
- 7B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Nat. Mater. 2008, 7, 659.
- 8Y. Zhao, K. Zhu, Chem. Soc. Rev. 2016, 45, 655.
- 9M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745.
- 10H. Utzat, W. Sun, A. E. K. Kaplan, F. Krieg, M. Ginterseder, B. Spokoyny, N. D. Klein, K. E. Shulenberger, C. F. Perkinson, M. V. Kovalenko, M. G. Bawendi, Science 2019, 363, 1068.
- 11G. Rainò, G. Nedelcu, L. Protesescu, M. I. Bodnarchuk, M. V. Kovalenko, R. F. Mahrt, T. Stöferle, ACS Nano 2016, 10, 2485.
- 12L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 13X. Zhang, X. Liu, J. Zhao, W. Sun, Y. Zhang, J. Qiao, G. Xing, X. Wang, Sustainability 2023, 15, 1353.
10.3390/su15021353 Google Scholar
- 14C. F. Burmeister, A. Kwade, Chem. Soc. Rev. 2013, 42, 7660.
- 15Y. Tong, M. Fu, E. Bladt, H. Huang, A. F. Richter, K. Wang, P. Müller-Buschbaum, S. Bals, P. Tamarat, B. Lounis, J. Feldmann, L. Polavarapu, Angew. Chem., Int. Ed. 2018, 57, 16094.
- 16Y. Tong, F. Ehrat, W. Vanderlinden, C. Cardenas-Daw, J. K. Stolarczyk, L. Polavarapu, A. S. Urban, ACS Nano 2016, 10, 10936.
- 17B.-W. Hsu, Y.-T. Chuang, C.-Y. Cheng, C.-Y. Chen, Y.-J. Chen, A. Brumberg, L. Yang, Y.-S. Huang, R. D. Schaller, L.-J. Chen, C.-S. Chuu, H.-W. Lin, ACS Nano 2021, 15, 11358.
- 18B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, Chem. Phys. Lett. 2000, 329, 399.
- 19V. Chandrasekaran, M. D. Tessier, D. Dupont, P. Geiregat, Z. Hens, E. Brainis, Nano Lett. 2017, 17, 6104.
- 20M. Fu, P. Tamarat, J.-B. Trebbia, M. I. Bodnarchuk, M. V. Kovalenko, J. Even, B. Lounis, Nat. Commun. 2018, 9, 3318.
- 21M. D'Amato, Q. Y. Tan, Q. Glorieux, A. Bramati, C. Soci, ACS Photonics 2023, 10, 197.
- 22C. Zhu, M. Marczak, L. Feld, S. C. Boehme, C. Bernasconi, A. Moskalenko, I. Cherniukh, D. Dirin, M. I. Bodnarchuk, M. V. Kovalenko, G. Rainò, Nano Lett. 2022, 22, 3751.
- 23Y.-S. Park, S. Guo, N. S. Makarov, V. I. Klimov, ACS Nano 2015, 9, 10386.
- 24S. Feng, Q. Qin, X. Han, C. Zhang, X. Wang, T. Yu, M. Xiao, Adv. Mater. 2022, 34, 2106278.
- 25Y. Lv, C. Yin, C. Zhang, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, Nano Lett. 2019, 19, 4442.
- 26A. L. Efros, D. J. Nesbitt, Nat. Nanotechnol. 2016, 11, 661.
- 27S. F. Lee, M. A. Osborne, ChemPhysChem 2009, 10, 2174.
- 28C. T. Trinh, D. N. Minh, K. J. Ahn, Y. Kang, K.-G. Lee, Sci. Rep. 2020, 10, 2172.
- 29G. Yuan, D. E. Gómez, N. Kirkwood, K. Boldt, P. Mulvaney, ACS Nano 2018, 12, 3397.
- 30J. Enomoto, R. Sato, M. Yokoyama, T. Kimura, N. Oshita, K. Umemoto, S. Asakura, A. Masuhara, RSC Adv. 2022, 12, 5571.
- 31F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong, H. Zhong, Chem. Mater. 2017, 29, 3793.
- 32T. J. Jacobsson, L. J. Schwan, M. Ottosson, A. Hagfeldt, T. Edvinsson, Inorg. Chem. 2015, 54, 10678.
- 33C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 34L. Guo, G. Xu, G. Tang, D. Fang, J. Hong, Nanotechnology 2020, 31, 225204.
- 35J. Wu, S.-C. Liu, Z. Li, S. Wang, D.-J. Xue, Y. Lin, J.-S. Hu, Natl. Sci. Rev. 2021, 8, nwab047.
- 36S. Chen, X. Zhang, J. Zhao, Y. Zhang, G. Kong, Q. Li, N. Li, Y. Yu, N. Xu, J. Zhang, K. Liu, Q. Zhao, J. Cao, J. Feng, X. Li, J. Qi, D. Yu, J. Li, P. Gao, Nat. Commun. 2018, 9, 4807.
- 37X. Yu, Y. Qin, Q. Peng, J. Phys. Chem. A 2017, 121, 1169.
- 38S. Chen, Y. Zhang, X. Zhang, J. Zhao, Z. Zhao, X. Su, Z. Hua, J. Zhang, J. Cao, J. Feng, X. Wang, X. Li, J. Qi, J. Li, P. Gao, Adv. Mater. 2020, 32, 2001107.
- 39P. Grünwald, New J. Phys. 2019, 21, 093003.
- 40A. Rubino, L. Caliò, M. E. Calvo, H. Míguez, Sol. RRL 2021, 5, 2100204.
- 41D. M. Niedzwiedzki, H. Zhou, P. Biswas, J. Phys. Chem. C 2022, 126, 1046.
- 42M. Baranowski, P. Plochocka, Adv. Energy Mater. 2020, 10, 1903659.
- 43J. Liu, F. Hu, Y. Zhou, C. Zhang, X. Wang, M. Xiao, J. Lumin. 2020, 221, 117032.
- 44S. Morozov, E. L. Pensa, A. H. Khan, A. Polovitsyn, E. Cortés, S. A. Maier, S. Vezzoli, I. Moreels, R. Sapienza, R. Sapienza, Sci. Adv. 2020, 6, eabb1821.
- 45S. Nah, B. Spokoyny, X. Jiang, C. Stoumpos, C. M. M. Soe, M. G. Kanatzidis, E. Harel, Nano Lett. 2018, 18, 827.
- 46G. Yumoto, Y. Kanemitsu, Phys. Chem. Chem. Phys. 2022, 24, 22405.
- 47N. Yarita, H. Tahara, T. Ihara, T. Kawawaki, R. Sato, M. Saruyama, T. Teranishi, Y. Kanemitsu, J. Phys. Chem. Lett. 2017, 8, 1413.
- 48Y. Kanemitsu, J. Chem. Phys. 2019, 151, 170902.
- 49G. Lubin, G. Yaniv, M. Kazes, A. C. Ulku, I. M. Antolovic, S. Burri, C. Bruschini, E. Charbon, V. J. Yallapragada, D. Oron, ACS Nano 2021, 15, 19581.
- 50D. Oron, M. Kazes, U. Banin, Phys. Rev. B 2007, 75, 035330.
- 51D. R. Baker, P. V. Kamat, Langmuir 2010, 26, 11272.
- 52M. N. Ashner, K. E. Shulenberger, F. Krieg, E. R. Powers, M. V. Kovalenko, M. G. Bawendi, W. A. Tisdale, ACS Energy Lett. 2019, 4, 2639.
- 53S. Nakahara, H. Tahara, G. Yumoto, T. Kawawaki, M. Saruyama, R. Sato, T. Teranishi, Y. Kanemitsu, J. Phys. Chem. C 2018, 122, 22188.
- 54J. J. P. Peters, T. Mullarkey, J. A. Gott, E. Nelson, L. Jones, Microsc. Microanal. 2023, 29, 1373.
- 55C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, A. H. Kung, Optica 2014, 1, 400.
- 56C.-H. Lu, W.-H. Wu, S.-H. Kuo, J.-Y. Guo, M.-C. Chen, S.-D. Yang, A. H. Kung, Opt. Express 2019, 27, 15638.
- 57B.-H. Chen, J.-X. Su, J.-Y. Guo, K. Chen, S.-W. Chu, H.-H. Lu, C.-H. Lu, S.-D. Yang, Frontiers in Photonics 2022, 3, 937622.
10.3389/fphot.2022.937622 Google Scholar
- 58R. R. Tamming, C.-Y. Lin, J. M. Hodgkiss, S.-D. Yang, K. Chen, C.-H. Lu, Sci. Rep. 2021, 11, 12847.