Creation of High-Quality Deep-Blue AIE Emitter with a Crossed Long-Short Axis Structure for Efficient and Versatile OLEDs
Jingli Lou
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorGanggang Li
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorXuecheng Guo
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorBaoxi Li
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorDezhi Yang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Han Zhang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiming Wang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJingli Lou
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorGanggang Li
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorXuecheng Guo
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorBaoxi Li
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorDezhi Yang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Han Zhang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhiming Wang
AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ben Zhong Tang
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing deep-blue emitters for organic light-emitting diodes (OLEDs) is critical but challenging, which requires a good balance between light color, exciton utilization, and photoluminescence quantum yield (PLQY) of solid film. Herein, a high-quality deep-blue emitter, abbreviated 2TriPE-CzMCN, is designed by introducing an aggregation-induced emission (AIE) group into a crossed long-short axis (CLSA) skeleton. Theoretical and experimental investigations reveal that the CLSA molecular design can achieve a balance between deep-blue emission and triplet-excitons utilization, while the high PLQY of the solid film resulting from the AIE feature helps to improve the performance of OLEDs. Consequently, when 2TriPE-CzMCN is used as the emitting dopant, the OLED exhibits a deep-blue emission at 430 nm with a record-high maximum external quantum efficiency (EQE) of 8.84%. When 2TriPE-CzMCN serves as the host material, the sensitized monochrome orange and two-color white OLEDs (WOLEDs) realize high EL performances that exceed the efficiency limit of conventional fluorescent OLEDs. Moreover, high-performance three-color WOLEDs with a color rendering index (CRI) exceeding 90 and EQE up to 18.08% are achieved by using 2TriPE-CzMCN as the blue-emitting source. This work demonstrates that endowing CLSA molecule with AIE feature is an effective strategy for developing high-quality deep-blue emitters, and high-performance versatile OLEDs can be realized through rational device engineering.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202308468-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
- 2Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678.
- 3Y. Zhu, S. Zeng, W. Gong, X. Chen, C. Xiao, H. Ma, W. Zhu, J. Yeob Lee, Y. Wang, Chem. Eng. J. 2022, 450, 138459.
- 4C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Nat. Photonics 2021, 15, 203.
- 5B. Li, J. Lou, H. Zhang, G. Li, X. He, Y. Huang, N. Zheng, Z. Wang, D. Ma, B. Z. Tang, Adv. Funct. Mater. 2023, 33, 2212876.
- 6D. Zhang, X. Song, A. J. Gillett, B. H. Drummond, S. T. E. Jones, G. Li, H. He, M. Cai, D. Credgington, L. Duan, Adv. Mater. 2020, 32, 1908355.
- 7H. Zhang, J. Xue, C. Li, S. Zhang, B. Yang, Y. Liu, Y. Wang, Adv. Funct. Mater. 2021, 31, 2100704.
- 8S. Ye, Y. Wang, R. Guo, Q. Zhang, X. Lv, Y. Duan, P. Leng, S. Sun, L. Wang, Chem. Eng. J. 2020, 393, 124694.
- 9G. Xie, J. Luo, M. Huang, T. Chen, K. Wu, S. Gong, C. Yang, Adv. Mater. 2017, 29, 1604223.
- 10F. Liu, Z. Cheng, L. Wan, L. Gao, Z. Yan, D. Hu, L. Ying, P. Lu, Y. Ma, Chem. Eng. J. 2021, 426, 131351.
- 11R. Kim, S. Lee, K.-H. Kim, Y.-J. Lee, S.-K. Kwon, J.-J. Kim, Y.-H. Kim, Chem. Commun. 2013, 49, 4664.
- 12L. Li, B. Jiao, Y. Yu, L. Ma, X. Hou, Z. Wu, RSC Adv. 2015, 5, 59027.
- 13T. M. Figueira-Duarte, K. Müllen, Chem. Rev. 2011, 111, 7260.
- 14Z.-Q. Wang, C.-L. Liu, C.-J. Zheng, W.-Z. Wang, C. Xu, M. Zhu, B.-M. Ji, F. Li, X.-H. Zhang, Org. Electron. 2015, 23, 179.
- 15S.-N. Zou, X. Chen, S.-Y. Yang, S. Kumar, Y.-K. Qu, Y.-J. Yu, M.-K. Fung, Z.-Q. Jiang, L.-S. Liao, Adv. Opt. Mater. 2020, 8, 2001074.
- 16Y. Yuan, J.-X. Chen, F. Lu, Q.-X. Tong, Q.-D. Yang, H.-W. Mo, T.-W. Ng, F.-L. Wong, Z.-Q. Guo, J. Ye, Z. Chen, X.-H. Zhang, C.-S. Lee, Chem. Mater. 2013, 25, 4957.
- 17H. Liu, Q. Bai, L. Yao, H. Zhang, H. Xu, S. Zhang, W. Li, Y. Gao, J. Li, P. Lu, H. Wang, B. Yang, Y. Ma, Chem. Sci. 2015, 6, 3797.
- 18M. Chen, Y. Yuan, J. Zheng, W.-C. Chen, L.-J. Shi, Z.-L. Zhu, F. Lu, Q.-X. Tong, Q.-D. Yang, J. Ye, M.-Y. Chan, C.-S. Lee, Adv. Opt. Mater. 2015, 3, 1215.
- 19B. Z. Tang, X. Zhan, G. Yu, P. P. Sze Lee, Y. Liu, D. Zhu, J. Mater. Chem. 2001, 11, 2974.
- 20J. Zhao, Z. Feng, D. Zhong, X. Yang, Y. Wu, G. Zhou, Z. Wu, Chem. Mater. 2018, 30, 929.
- 21W. Yang, Y. Yang, L. Zhan, K. Zheng, Z. Chen, X. Zeng, S. Gong, C. Yang, Chem. Eng. J. 2020, 390, 124626.
- 22J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
- 23Y. Yu, Z. Xu, Z. Zhao, H. Zhang, D. Ma, J. W. Y. Lam, A. Qin, B. Z. Tang, ACS Omega 2018, 3, 16347.
- 24H. Sun, S.-S. Sun, F.-F. Han, Y. Zhao, M.-D. Li, B.-X. Miao, J. Nie, R. Zhang, Z.-H. Ni, Chem. Eng. J. 2021, 405, 127000.
- 25M.-Y. Li, S. Zhai, X.-M. Nong, A. Gu, J. Li, G.-Q. Lin, Y. Liu, Sci. China Chem. 2023, 66, 1261.
- 26W. Qin, Z. Yang, Y. Jiang, J. W. Y. Lam, G. Liang, H. S. Kwok, B. Z. Tang, Chem. Mater. 2015, 27, 3892.
- 27K. Itami, Y. Ohashi, J.-I. Yoshida, J. Org. Chem. 2005, 70, 2778.
- 28C. Wang, L. Li, X. Zhan, Z. Ruan, Y. Xie, Q. Hu, S. Ye, Q. Li, Z. Li, Sci. Bull. 2016, 61, 1746.
- 29K. Itami, K. Tonogaki, Y. Ohashi, J.-I. Yoshida, Org. Lett. 2004, 6, 4093.
- 30B. Chen, B. Liu, J. Zeng, H. Nie, Y. Xiong, J. Zou, H. Ning, Z. Wang, Z. Zhao, B. Z. Tang, Adv. Funct. Mater. 2018, 28, 1803369.
- 31H. Zhang, A. Li, G. Li, B. Li, Z. Wang, S. Xu, W. Xu, B. Z. Tang, Adv. Opt. Mater. 2020, 8, 1902195.
- 32D. Zhang, L. Duan, Nat. Photonics 2021, 15, 173.
- 33Q. Cao, W. Zhang, H. Xu, J. Wang, M. Pei, Y. Qian, T. Zhou, K. Zhang, X. Ban, Chem. Eng. J. 2023, 466, 143088.
- 34R. Pei, J. Lou, G. Li, H. Liu, X. Yin, C. Zhou, Z. Wang, C. Yang, Chem. Eng. J. 2022, 437, 135222.
- 35W. Li, Y. Pan, L. Yao, H. Liu, S. Zhang, C. Wang, F. Shen, P. Lu, B. Yang, Y. Ma, Adv. Opt. Mater. 2014, 2, 892.
- 36W. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y. Wang, B. Yang, Y. Ma, Adv. Funct. Mater. 2014, 24, 1609.
- 37S. Xue, X. Qiu, S. Ying, Y. Lu, Y. Pan, Q. Sun, C. Gu, W. Yang, Adv. Opt. Mater. 2017, 5, 1700747.
- 38J. Chen, H. Liu, J. Guo, J. Wang, N. Qiu, S. Xiao, J. Chi, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Angew. Chem., Int. Ed. 2022, 61, e202116810.
- 39Z. Zhong, X. Zhu, X. Wang, Y. Zheng, S. Geng, Z. Zhou, X. J. Feng, Z. Zhao, H. Lu, Adv. Funct. Mater. 2022, 32, 2112969.
- 40H. Zhang, J. Zeng, W. Luo, H. Wu, C. Zeng, K. Zhang, W. Feng, Z. Wang, Z. Zhao, B. Z. Tang, J. Mater. Chem. C 2019, 7, 6359.
- 41H. Zhang, G. Li, X. Guo, K. Zhang, B. Zhang, X. Guo, Y. Li, J. Fan, Z. Wang, D. Ma, B. Z. Tang, Angew. Chem., Int. Ed. 2021, 60, 22241.
- 42G. Li, B. Li, H. Zhang, X. Guo, C. Lin, K. Chen, Z. Wang, D. Ma, B. Z. Tang, ACS Appl. Mater. Interfaces 2022, 14, 10627.
- 43X. Guo, G. Li, J. Lou, K. Chen, R. Huang, D. Yang, H. Zhang, Z. Wang, B. Z. Tang, Small 2022, 18, 2204029.
- 44T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 45J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535.
- 46S. Zhang, L. Yao, Q. Peng, W. Li, Y. Pan, R. Xiao, Y. Gao, C. Gu, Z. Wang, P. Lu, F. Li, S. Su, B. Yang, Y. Ma, Adv. Funct. Mater. 2015, 25, 1755.
- 47a) Y. He, Z. Qiao, X. Cai, M. Li, W. Li, W. Xie, W. Qiu, L. Wang, S.-J. Su, ACS Appl. Mater. Interfaces 2020, 12, 49905.
- 48S. K. Jeon, H. L. Lee, K. S. Yook, J. Y. Lee, Adv. Mater. 2019, 3, 1803524.
10.1002/adma.201803524 Google Scholar
- 49C.-C. Yan, X.-D. Wang, L.-S. Liao, Adv. Sci. 2022, 9, 2200525.
- 50G. Liaptsis, K. Meerholz, Adv. Funct. Mater. 2013, 23, 359.
- 51Q. Wu, M. Wang, X. Cao, D. Zhang, N. Sun, S. Wan, Y. Tao, J. Mater. Chem. C 2018, 6, 8784.
- 52Y. Wang, B. Li, C. Jiang, Y. Fang, P. Bai, Y. Wang, J. Phys. Chem. C 2021, 125, 16753.
- 53V. Jankus, C.-J. Chiang, F. Dias, A. P. Monkman, Adv. Mater. 2013, 25, 1455.
- 54J.-Y. Hu, Y.-J. Pu, F. Satoh, S. Kawata, H. Katagiri, H. Sasabe, J. Kido, Adv. Funct. Mater. 2014, 24, 2064.
- 55W. Liu, S. Ying, R. Guo, X. Qiao, P. Leng, Q. Zhang, Y. Wang, D. Ma, L. Wang, J. Mater. Chem. C 2019, 7, 1014.
- 56X. Guo, P. Yuan, J. Fan, X. Qiao, D. Yang, Y. Dai, Q. Sun, A. Qin, B. Z. Tang, D. Ma, Adv. Mater. 2021, 33, 2006953.
- 57R. Guo, W. Liu, S. Ying, Y. Xu, Y. Wen, Y. Wang, D. Hu, X. Qiao, B. Yang, D. Ma, L. Wang, Sci. Bull. 2021, 66, 2090.
- 58Z. Wu, Y. Liu, L. Yu, C. Zhao, D. Yang, X. Qiao, J. Chen, C. Yang, H. Kleemann, K. Leo, D. Ma, Nat. Commun. 2019, 10, 2380.
- 59Q. Cao, W. Zhang, H. Xu, J. Wang, M. Pei, Y. Qian, T. Zhou, K. Zhang, X. Ban, Chem. Eng. J. 2023, 466, 143088.
- 60X. Wu, J. Zeng, X. Peng, H. Liu, B. Z. Tang, Z. Zhao, Chem. Eng. J. 2023, 451, 138919.
- 61H. Liu, Y. Fu, B. Z. Tang, Z. Zhao, Nat. Commun. 2022, 13, 5154.
- 62J. P. Duan, P. P. Sun, C. H. Cheng, Adv. Mater. 2003, 15, 224.
- 63Y. Li, L. Zhou, R. Cui, Y. Jiang, X. Zhao, W. Liu, Q. Zhu, Y. Cui, H. Zhang, RSC Adv. 2016, 6, 71282.
- 64X. Ban, K. Sun, Y. Sun, B. Huang, W. Jiang, ACS Appl. Mater. Interfaces 2016, 8, 2010.
- 65Y. Li, Y. Liu, W. Bu, D. Lu, Y. Wu, Y. Wang, Chem. Mater. 2000, 12, 26.