Cu Tailoring Pt Enables Branched-Structured Electrocatalysts with High Concave Surface Curvature Toward Efficient Methanol Oxidation
Yidan Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorShukang Zhang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorShangqing Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorLiang Wu
School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorJie Tian
Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorYuping Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorYuhui Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Xiaojing Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
E-mail: [email protected]
Search for more papers by this authorYidan Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorShukang Zhang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorShangqing Sun
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorLiang Wu
School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorJie Tian
Engineering and Materials Science Experiment Center, University of Science and Technology of China, Hefei, 230026 P. R. China
Search for more papers by this authorYuping Wu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorYuhui Chen
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
Search for more papers by this authorCorresponding Author
Xiaojing Liu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Surface engineering offers opportunities for the design and synthesis of Pt-based alloyed electrocatalysts with high mass activity and resistance to CO poisoning, which is of great significance for methanol electrooxidation. Surface curvature regulation may endow electrocatalysts with enhanced atomic utilization and abundance of unsaturated atoms; however, a reliable synthetic route for controlled construction of tailorable curved surface is still lacking. Here, a colloidal-chemical method to synthesize two types of PtCu branched-structured electrocatalysts, where the concave curvature can be customized is reported. These studies show that, among various synthesis parameters, the concentration of CuCl2·2H2O precursor is the key factor in manipulating the reaction kinetics and determining the concave surface curvature. Significantly, PtCu branched nanocrystals with long and sharp arms (PtCu BNCs-L), featuring a high concave surface curvature, exhibit remarkable activity and stability toward MOR, which is mainly attributed to advanced features of a highly concave surface and the synergistically bifunctional effect from introduced oxophilic Cu metal. In situ Raman spectroscopy and CO stripping test demonstrates weakened CO adsorption and accelerated CO removal on PtCu BNCs-L. This work highlights the importance of surface curvature, opening up an appealing route for the design and synthesis of advanced electrocatalysts with well-defined surface configurations.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202307970-sup-0001-SuppMat.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. K. Debe, Nature 2012, 486, 43; b) T. Xia, K. Zhao, Y. Zhu, X. Bai, H. Gao, Z. Wang, Y. Gong, M. Feng, S. Li, Q. Zheng, S. Wang, R. Wang, H. Guo, Adv. Mater. 2023, 35, 2206508; c) H. Huang, D. Xiao, Z. Zhu, C. Zhang, L. Yang, H. He, J. You, Q. Jiang, X. Xu, Y. Yamauchi, Chem. Sci. 2023, 14, 9854.
- 2a) J. Zhu, L. Xia, R. Yu, R. Lu, J. Li, R. He, Y. Wu, W. Zhang, X. Hong, W. Chen, Y. Zhao, L. Zhou, L. Mai, Z. Wang, J. Am. Chem. Soc. 2022, 144, 15529; b) H. Liu, R. Jia, C. Qin, Q. Yang, Z. Tang, M. Li, Z. Ma, Adv. Funct. Mater. 2023, 33, 2210626; c) J. Wang, B. Zhang, W. Guo, L. Wang, J. Chen, H. Pan, W. Sun, Adv. Mater. 2023, 35, 2211099; d) L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang, S. Dong, J. Am. Chem. Soc. 2018, 140, 1142; e) W. Meng, H. He, L. Yang, Q. Jiang, B. Yuliarto, Y. Yamauchi, X. Xu, H. Huang, Chem. Eng. J. 2022, 450, 137932.
- 3a) X. X. Wang, M. T. Swihart, G. Wu, Nat. Catal. 2019, 2, 578; b) L. Shen, M. Ma, F. Tu, Z. Zhao, Y. Xia, K. Goh, L. Zhao, Z. Wang, G. Shao, SusMat 2021, 1, 569; c) C. Yang, Q. Jiang, H. Liu, L. Yang, H. He, H. Huang, W. Li, J. Mater. Chem. A 2021, 9, 15432; d) Z. Chen, Y. Liao, S. Chen, Energy Mater 2022, 2, 200033.
- 4a) X. Luo, C. Liu, X. Wang, Q. Shao, Y. Pi, T. Zhu, Y. Li, X. Huang, Nano Lett. 2020, 20, 1967; b) X. Wang, Y. Tong, W. Feng, P. Liu, X. Li, Y. Cui, T. Cai, L. Zhao, Q. Xue, Z. Yan, X. Yuan, W. Xing, Nat. Commun. 2023, 14, 3767; c) H. Luo, K. Wang, F. Lin, F. Lv, J. Zhou, W. Zhang, D. Wang, W. Zhang, Q. Zhang, L. Gu, M. Luo, S. Guo, Adv. Mater. 2023, 35, 2211854; d) S. Yang, X. Yang, X. Cui, X. Gao, H. Zuo, X. Tong, N. Yang, SusMat 2022, 2, 689.
- 5a) J. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Joule 2019, 3, 956. b) L. Liu, Q. Zhu, J. Li, J. Chen, J. Huang, Q. Sun, Z. Wen, Energy Mater 2022, 2, 200007.
- 6X. Yang, Q. Yuan, J. Li, T. Sheng, K. X. Yao, X. Wang, Nano Lett. 2023, 23, 3467.
- 7a) F. Kong, X. Liu, Y. Song, Z. Qian, J. Li, L. Zhang, G. Yin, J. Wang, D. Su, X. Sun, Angew. Chem., Int. Ed. 2022, 61, 202207524; b) K. Guo, X. Han, S. Wei, J. Bao, Y. Lin, Y. Li, D. Xu, Nano Lett. 2023, 23, 1085; c) C. Xiao, B.-A. Lu, P. Xue, N. Tian, Z.-Y. Zhou, X. Lin, W.-F. Lin, S.-G. Sun, Joule 2020, 4, 2562; d) L. Bu, J. Liang, F. Ning, J. Huang, B. Huang, M. Sun, C. Zhan, Y. Ma, X. Zhou, Q. Li, X. Huang, Adv. Mater. 2023, 35, 2208672.
- 8a) M. Iqbal, Y. Kim, A. G. Saputro, G. Shukri, B. Yuliarto, H. Lim, H. Nara, A. A. Alothman, J. Na, Y. Bando, Y. Yamauchi, ACS Appl. Mater. Interfaces 2020, 12, 51357; b) Y. Wang, Z. Bao, M. Shi, Z. Liang, R. Cao, H. Zheng, Chem. - Eur. J. 2022, 28, 202102915.
- 9a) S. Jiang, Y. Luan, X. Fan, Z. Quan, J. Fang, in Bimetallic Nanostructures, Wiley, Hoboken, NJ, USA 2018; b) B. Y. Xia, H. B. Wu, X. Wang, X. W. (.D.). Lou, Angew. Chem., Int. Ed. 2013, 52, 12337; c) Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B.-A. Lu, Z. Xie, L. Zheng, Nat. Commun. 2017, 8, 15131.
- 10H.-L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 2015, 44, 3056.
- 11a) F.-M. Li, L. Huang, S. Zaman, W. Guo, H. Liu, X. Guo, B. Y. Xia, Adv. Mater. 2022, 34, 2200840; b) Y. Wu, D. Wang, Z. Niu, P. Chen, G. Zhou, Y. Li, Angew. Chem., Int. Ed. 2012, 51, 12524; c) Q. Chen, Y. Yang, Z. Cao, Q. Kuang, G. Du, Y. Jiang, Z. Xie, L. Zheng, Angew. Chem., Int. Ed. 2016, 55, 9021; d) X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. (D.) Lou, B. Y. Xia, Science 2019, 366, 850.
- 12a) D. Gao, H. Li, P. Wei, Y. Wang, G. Wang, X. Bao, Chin. J. of Catal. 2022, 43, 1001; b) G. M. Leteba, Y.-C. Wang, T. J. A. Slater, R. Cai, C. Byrne, C. P. Race, D. R. G. Mitchell, P. B. J. Levecque, N. P. Young, S. M. Holmes, A. Walton, A. I. Kirkland, S. J. Haigh, C. I. Lang, Nano Lett. 2021, 21, 3989.
- 13K. Yin, Y. Chao, F. Lv, L. Tao, W. Zhang, S. Lu, M. Li, Q. Zhang, L. Gu, H. Li, S. Guo, J. Am. Chem. Soc. 2021, 143, 10822.
- 14Z. Zhang, J. Li, S. Liu, X. Zhou, L. Xu, X. Tian, J. Yang, Y. Tang, Small 2022, 18, 2202782.
- 15L.-M. Lyu, Y.-C. Kao, D. A. Cullen, B. T. Sneed, Y.-C. Chuang, C.-H. Kuo, Chem. Mater. 2017, 29, 5681.
- 16Y. Zhang, K. Ye, Q. Liu, J. Qin, Q. Jiang, B. Yang, F. Yin, Adv. Sci. 2022, 9, 2104927.
- 17S. Ghosh, L. Manna, Chem. Rev. 2018, 118, 7804.
- 18a) A. Fan, C. Qin, R. Zhao, H. Sun, H. Sun, X. Dai, J.-Y. Ye, S.-G. Sun, Y. Lu, X. Zhang, Nano Res. 2022, 15, 6961; b) Y. Ren, B. Li, C. Lv, F. Gao, X. Yang, L. Li, Z. Lu, X. Yu, X. Zhang, Appl. Surf. Sci. 2022, 593, 153404; c) X. Bai, J. Geng, S. Zhao, H. Li, F. Li, ACS Appl. Mater. Interfaces 2020, 12, 23046; d) X. Fan, M. Zhao, T. Li, L. Y. Zhang, M. Jing, W. Yuan, C. M. Li, Nanoscale 2021, 13, 18332; e) Y. Liu, E. Zhu, J. Huang, A. Zhang, A. H. Shah, Q. Jia, M. Xu, E. Liu, Q. Sun, X. Duan, Y. Huang, Nano Lett. 2023, 23, 2758; f) Y. Li, H. Li, G. Li, D. Wang, S. Wang, X. Zhao, Nanoscale 2022, 14, 14199.
- 19B. Ren, X. Q. Li, C. X. She, D. Y. Wu, Z. Q. Tian, Electrochim. Acta 2000, 46, 193.
- 20a) H. Zhang, C. Wang, H.-L. Sun, G. Fu, S. Chen, Y.-J. Zhang, B.-H. Chen, J. R. Anema, Z.-L. Yang, J.-F. Li, Z.-Q. Tian, Nat. Commun. 2017, 8, 15447; b) X. Wang, Y. Zhang, J. Shi, J. Cai, G. Liu, J. Tang, J. Phys. Chem. C 2023, 127, 13034; c) X. Chen, M.-M. Liang, J. Xu, H.-L. Sun, C. Wang, J. Wei, H. Zhang, W.-M. Yang, Z.-L. Yang, J.-J. Sun, Z.-Q. Tian, J.-F. Li, Nanoscale 2020, 12, 5341.
- 21J. Liang, Y. Xia, X. Liu, F. Huang, J. Liu, S. Li, T. Wang, S. Jiao, R. Cao, J. Han, H.-L. Wang, Q. Li, SusMat 2022, 2, 347.
- 22V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 2007, 315, 493.
- 23a) Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, J. Am. Chem. Soc. 2003, 125, 3680; b) Q.-S. Chen, J. M. Feliu, A. Berna, V. Climent, S.-G. Sun, Electrochim. Acta 2011, 56, 5993.
- 24Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y. Zhang, W.-F. Lin, W.-B. Cai, Appl. Catal., B 2021, 280, 119393.