Highly N-Doped Fe/Co Phosphide Superstructures for Efficient Water Splitting
Zhicheng Liu
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorTian Zhang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorCorresponding Author
Yan Lin
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHongrui Jia
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorYaqun Wang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorCorresponding Author
Yiyan Wang
Sinopec Shanghai Research Institute of Petrochemical Technology Co., LTD, Shanghai, 201208 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guoxin Zhang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhicheng Liu
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorTian Zhang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorCorresponding Author
Yan Lin
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorHongrui Jia
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorYaqun Wang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
Search for more papers by this authorCorresponding Author
Yiyan Wang
Sinopec Shanghai Research Institute of Petrochemical Technology Co., LTD, Shanghai, 201208 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Guoxin Zhang
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Developing an inexpensive bifunctional electrocatalyst for overall water splitting is critical for acquiring scalable green hydrogen and thereby realizing carbon neutralization. Herein, an “all-in-one” method is developed for the fabrication of highly N-doped binary FeCo-phosphides (N-FeCoP) with hierarchical superstructure, this delicately designed synthesis route allows the following merits for benefiting water splitting electrocatalysis in alkaline, including high N/defect-doping for mediating the surface property of the as-made N-FeCoP, binary Fe and Co components exhibiting strong coupling interaction, and 3D hierarchical superstructure for shortening diffusion length and thereby improving reaction kinetics. Electrochemical measurements reveal that the N-FeCoP sample exhibits very low overpotentials for initiating the hydrogen and oxygen evolution reactions. Remarkably, overall water splitting can be promoted on N-FeCoP using a commercial primary Zn-MnO2 battery. The developed synthesis strategy may potentially inspire the preparation of other N-doped metal-based nanostructures for broad electrocatalysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302475-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, Chem. Soc. Rev. 2022, 51, 4583.
- 2Q. Hu, K. Gao, X. Wang, H. Zheng, J. Cao, L. Mi, Q. Huo, H. Yang, J. Liu, C. He, Nat. Commun. 2022, 13, 3958.
- 3T. Liang, A. Wang, D. Ma, Z. Mao, J. Wang, J. Xie, Nanoscale 2022, 14, 17841.
- 4Q. Hu, Y. Qin, X. Wang, Z. Wang, X. Huang, H. Zheng, K. Gao, H. Yang, P. Zhang, M. Shao, C. He, Energy Environ. Sci. 2021, 14, 4989.
- 5L. Mi, Q. Huo, J. Cao, X. Chen, H. Yang, Q. Hu, C. He, Adv. Energy Mater. 2022, 12, 2202247.
- 6W. Zhang, N. Han, J. Luo, X. Han, S. Feng, W. Guo, S. Xie, Z. Zhou, P. Subramanian, K. Wan, Small 2022, 18, 2103561.
- 7P. M. Bodhankar, P. B. Sarawade, P. Kumar, A. Vinu, A. P. Kulkarni, C. D. Lokhande, D. S. Dhawale, Small 2022, 18, 2107572.
- 8E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
- 9P. Arunkumar, S. Gayathri, J. H. Han, ChemSusChem 2021, 14, 1921.
- 10K. Sharma, A. Kumar, T. Ahamad, Q. Van Le, P. Raizada, A. Singh, L. H. Nguyen, S. Thakur, V.-H. Nguyen, P. Singh, J. Mater. Sci. Technol. 2023, 152, 50.
- 11Y. Tang, C. Yang, X. Xu, Y. Kang, J. Henzie, W. Que, Y. Yamauchi, Adv. Energy Mater. 2022, 12, 2103867.
- 12T. Xu, D. Jiao, L. Zhang, H. Zhang, L. Zheng, D. J. Singh, J. Zhao, W. Zheng, X. Cui, Appl. Catal. B 2022, 316, 121686.
- 13L. Yan, B. Zhang, J. Zhu, S. Zhao, Y. Li, B. Zhang, J. Jiang, X. Ji, H. Zhang, P. K. Shen, J. Mater. Chem. A 2019, 7, 14271.
- 14J. Zhang, S. Huang, P. Ning, P. Xin, Z. Chen, Q. Wang, K. Uvdal, Z. Hu, Nano Res. 2022, 15, 1916.
- 15Q. Liang, L. Zhong, C. Du, Y. Luo, J. Zhao, Y. Zheng, J. Xu, J. Ma, C. Liu, S. Li, ACS Nano 2019, 13, 7975.
- 16L. Wu, L. Yu, F. Zhang, B. Mcelhenny, D. Luo, A. Karim, S. Chen, Z. Ren, Adv. Funct. Mater. 2021, 31, 2006484.
- 17L. Yu, L. Wu, S. Song, B. Mcelhenny, F. Zhang, S. Chen, Z. Ren, ACS Energy Lett. 2020, 5, 2681.
- 18J. Wu, D. Wang, S. Wan, H. Liu, C. Wang, X. Wang, Small 2020, 16, 1900550.
- 19X. Wang, X. Liu, S. Wu, K. Liu, X. Meng, B. Li, J. Lai, L. Wang, S. Feng, Nano Energy 2023, 109, 108292.
- 20L. Wang, J. Fan, Y. Liu, M. Chen, Y. Lin, H. Bi, B. Liu, N. Shi, D. Xu, J. Bao, M. Han, Adv. Funct. Mater. 2021, 31, 2010912.
- 21Y. Lu, Z. Li, Y. Xu, L. Tang, S. Xu, D. Li, J. Zhu, D. Jiang, Chem. Eng. J. 2021, 411, 128433.
- 22H. Song, J. Yu, Z. Tang, B. Yang, S. Lu, Adv. Energy Mater. 2022, 12, 2102573.
- 23G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W.-F. Lin, H. Dai, Energy Environ. Sci. 2019, 12, 1317.
- 24M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia, Y. Zhang, G. Zhang, Z. Yan, X. Sun, Appl. Catal. B 2020, 274, 119091.
- 25Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang, Y. Zhang, G. Zhang, X. Sun, Z. Yan, Nano Res. 2020, 13, 1090.
- 26Y. Zhang, H. Jiang, A. Kumar, H. Zhang, Z. Li, T. Xu, Y. Pan, Y. Wang, Z. Liu, G. Zhang, Z. Yan, Carbon Energy 2023, 5, e341.
- 27Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, ACS Catal. 2018, 8, 2236.
- 28L. Yu, S. Song, B. McElhenny, F. Ding, D. Luo, Y. Yu, S. Chen, Z. Ren, J. Mater. Chem. A 2019, 7, 19728.
- 29Y. Huang, J. Ge, J. Hu, J. Zhang, J. Hao, Y. Wei, Adv. Energy Mater. 2018, 8, 1701601.
- 30Y. Men, P. Li, F. Yang, G. Cheng, S. Chen, W. Luo, Appl. Catal. B 2019, 253, 21.
- 31D. Wang, Y. Wu, Z. Li, H. Pan, Y. Wang, M. Yang, G. Zhang, Chem. Eng. J. 2021, 424, 130401.
- 32Y. Xiao, X. Zheng, X. Chen, L. Jiang, Y. Zheng, Ind. Eng. Chem. Res. 2017, 56, 1687.
- 33M. Cheng, Z. Li, T. Xu, Y. Mao, Y. Zhang, G. Zhang, Z. Yan, Electrochim. Acta 2022, 430, 141091.
- 34Q. Meng, Y. Hou, F. Yang, C. Cao, Z. Zou, J. Luo, W. Zhou, Z. Tong, S. Chen, S. Zhou, J. Wang, S. Deng, Appl. Catal. B 2022, 303, 120874.
- 35L. Su, X. Cui, T. He, L. Zeng, H. Tian, Y. Song, K. Qi, B. Y. Xia, Chem. Sci. 2019, 10, 2019.
- 36R. Fu, X. Jiao, J. Yu, Q. Jiao, C. Feng, Y. Zhao, J. Electroanal. Chem. 2023, 930, 117137.
- 37X. Xu, Y. He, W. Huang, A. Cao, L. Kang, J. Liu, ACS Appl. Mater. Interfaces 2022, 14, 17520.
- 38S. Wen, J. Huang, T. Li, W. Chen, G. Chen, Q. Zhang, X. Zhang, Q. Qian, K. Ostrikov, Appl. Catal. B 2022, 316, 121678.
- 39Y. Liu, Z. Zhang, L. Zhang, Y. Xia, H. Wang, H. Liu, S. Ge, J. Yu, J. Mater. Chem. A 2022, 10, 22125.
- 40Z. Wang, C. Wei, X. Zhu, X. Wang, J. He, Y. Zhao, J. Mater. Chem. A 2021, 9, 1150.
- 41Y. Wen, S. Xu, P. Wang, X. Shao, X. Sun, J. Hu, X.-R. Shi, J. Alloys Compd. 2023, 931, 167570.
- 42Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, Angew. Chem., Int. Ed. 2014, 53, 6710.
- 43R. Liu, M. Anjass, S. Greiner, S. Liu, D. Gao, J. Biskupek, U. Kaiser, G. Zhang, C. Streb, Chem. - Eur. J. 2020, 26, 4157.
- 44H. Sun, Y. Min, W. Yang, Y. Lian, L. Lin, K. Feng, Z. Deng, M. Chen, J. Zhong, L. Xu, ACS Catal. 2019, 9, 8882.
- 45X. Shu, M. Yang, M. Liu, H. Wang, J. Zhang, Chin. J. Catal. 2022, 43, 3107.
- 46W. Li, Y. Jiang, Y. Li, Q. Gao, W. Shen, Y. Jiang, R. He, M. Li, Chem. Eng. J. 2021, 425, 130651.
- 47Y. Zhao, N. Dongfang, C. A. Triana, C. Huang, R. Erni, W. Wan, J. Li, D. Stoian, L. Pan, P. Zhang, Energy Environ. Sci. 2022, 15, 727.
- 48H. Liu, S. Yang, J. Ma, M. Dou, F. Wang, Nano Energy 2022, 98, 107315.
- 49E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X. W. D. Lou, Energy Environ. Sci. 2018, 11, 872.
- 50C. C. Yang, S. F. Zai, Y. T. Zhou, L. Du, Q. Jiang, Adv. Funct. Mater. 2019, 29, 1901949.