A Transmetalation Synthetic Strategy to Engineer Atomically Dispersed MnN2O2 Electrocatalytic Centers Driving High-Performance LiS Battery
Tengfei Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorDengfeng Luo
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063 P. R. China
Search for more papers by this authorHong Xiao
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorXiao Liang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorFanchao Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorHuifeng Zhuang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorCorresponding Author
Mingde Li
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiuming Gao
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorTengfei Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorDengfeng Luo
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063 P. R. China
Search for more papers by this authorHong Xiao
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorXiao Liang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorFanchao Zhang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorHuifeng Zhuang
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
Search for more papers by this authorCorresponding Author
Mingde Li
Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Lirong Zheng
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qiuming Gao
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Sluggish sulfur redox reaction (SROR) kinetics accompanying lithium polysulfides (LiPSs) shuttle effect becomes a stumbling block for commercial application of LiS battery. High-efficient single atom catalysts (SACs) are desired to improve the SROR conversion capability; however, the sparse active sites as well as partial sites encapsulated in bulk-phase are fatal to the catalytic performance. Herein, high loading (5.02 wt.%) atomically dispersed manganese sites (MnSA) on hollow nitrogen-doped carbonaceous support (HNC) are realized for the MnSA@HNC SAC by a facile transmetalation synthetic strategy. The thin-walled hollow structure (≈12 nm) anchoring the unique trans-MnN2O2 sites of MnSA@HNC provides a shuttle buffer zone and catalytic conversion site for LiPSs. Both electrochemical measurement and theoretical calculation indicate that the MnSA@HNC with abundant trans-MnN2O2 sites have extremely high bidirectional SROR catalytic activity. The assembled LiS battery based on the MnSA@HNC modified separator can deliver a large specific capacity of 1422 mAh g−1 at 0.1 C and stable cycling over 1400 cycles with an ultralow decay rate of 0.033% per cycle at 1 C. More impressively, a flexible pouch cell on account of the MnSA@HNC modified separator may release a high initial specific capacity of 1192 mAh g−1 at 0.1 C and uninterruptedly work after the bending-unbending processes.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302249-sup-0001-SuppMat.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chem. Rev. 2014, 114, 11751.
- 2Y. Liu, P. He, H. Zhou, Adv. Energy Mater. 2018, 8, 1701602.
- 3Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018.
- 4Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
- 5S. F. Ng, M. Y. L. Lau, W. J. Ong, Adv. Mater. 2021, 33, 2008654.
- 6Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Adv. Funct. Mater. 2018, 28, 1707536.
- 7S. Huang, Z. Wang, Y. Von Lim, Y. Wang, Y. Li, D. Zhang, H. Y. Yang, Adv. Energy Mater. 2021, 11, 2003689.
- 8W. G. Lim, S. Kim, C. Jo, J. Lee, Angew. Chem., Int. Ed. 2019, 58, 18746.
- 9B. Wang, Y. Ren, S. Chen, Q. Zhai, Y. Shi, Y. Ma, S. Tang, X. Meng, Nano Res. 2023, https://doi.org/10.1007/s12274-023-5551-z.
10.1007/s12274?023?5551?z Google Scholar
- 10Y. Ren, S. Chang, L. Hu, B. Wang, D. Sun, H. Wu, Y. Ma, Y. Yang, S. Tang, X. Meng, J. Mater. Chem. A 2022, 10, 17532.
- 11Y. Ren, Q. Zhai, B. Wang, L. Hu, Y. Ma, Y. Dai, S. Tang, X. Meng, Chem. Eng. J. 2022, 439, 135535.
- 12Q. Liu, Y. Wu, D. Li, Y. Q. Peng, X. Liu, B. Q. Li, J. Q. Huang, H. J. Peng, Adv. Mater. 2023, 35, 2209233.
- 13Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L. J. Wan, J. Am. Chem. Soc. 2019, 141, 3977.
- 14B. Singh, V. Sharma, R. P. Gaikwad, P. Fornasiero, R. Zboril, M. B. Gawande, Small 2021, 17, 2006473.
- 15H. Xiong, A. K. Datye, Y. Wang, Adv. Mater. 2021, 33, 2004319.
- 16C.-C. Hou, H.-F. Wang, C. Li, Q. Xu, Environ Sci 2020, 13, 1658.
- 17R. Xiao, T. Yu, S. Yang, K. Chen, Z. Li, Z. Liu, T. Hu, G. Hu, J. Li, H.-M. Cheng, Z. Sun, F. Li, Energy Storage Mater. 2022, 51, 890.
- 18J. Xie, B. Q. Li, H. J. Peng, Y. W. Song, M. Zhao, X. Chen, Q. Zhang, J. Q. Huang, Adv. Mater. 2019, 31, 1903813.
- 19Y. Miao, Y. Zheng, F. Tao, Z. Chen, Y. Xiong, F. Ren, Y. Liu, Chin. Chem. Lett. 2023, 34, 107121.
- 20W. Jing, Q. Tan, Y. Duan, K. Zou, X. Dai, Y. Song, M. Shi, J. Sun, Y. Chen, Y. Liu, Small 2023, 19, 2204880.
- 21G. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang, H. Li, H. Zhang, X. Sun, K. Dai, J. Mao, X. Li, L. Zhang, Nano Lett. 2022, 22, 6366.
- 22S. Xie, X. Chen, C. Wang, Y. R. Lu, T. S. Chan, C. H. Chuang, J. Zhang, W. Yan, S. Jin, H. Jin, X. Wu, H. Ji, Small 2022, 18, 2200395.
- 23S. Qiao, D. Lei, Q. Wang, X. Shi, Q. Zhang, C. Huang, A. Liu, G. He, F. Zhang, Chem. Eng. J. 2022, 442, 136258.
- 24S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai, D. Zhai, W. Deng, C. Su, D. Wang, Y. Li, Nano Lett. 2021, 21, 9691.
- 25S. Yu, Y. Sun, L. Song, X. Cao, L. Chen, X. An, X. Liu, W. Cai, T. Yao, Y. Song, W. Zhang, Nano Energy 2021, 89, 106414.
- 26Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. M. Cheng, Adv. Mater. 2021, 33, 2105947.
- 27J. Zhang, H. Yang, B. Liu, Adv. Energy Mater. 2020, 11, 2002473.
- 28Z. Miao, X. Wang, Z. Zhao, W. Zuo, S. Chen, Z. Li, Y. He, J. Liang, F. Ma, H. L. Wang, G. Lu, Y. Huang, G. Wu, Q. Li, Adv. Mater. 2021, 33, 2006613.
- 29Z. Wang, Y. Yan, Y. Zhang, Y. Chen, X. Peng, X. Wang, W. Zhao, C. Qin, Q. Liu, X. Liu, Z. Chen, Carbon Energy 2023, 306, https://doi.org/10.1002/cey2.306.
10.1002/cey2.306 Google Scholar
- 30J. Yuan, B. Xi, P. Wang, Z. Zhang, N. Song, X. An, J. Liu, J. Feng, S. Xiong, Small 2022, 18, e2203947.
- 31K. Liu, X. Wang, S. Gu, H. Yuan, F. Jiang, Y. Li, W. Tan, Q. Long, J. Chen, Z. Xu, N. Z. Lu, Small 2022, 18, e2204707.
- 32C. Tang, Y. Jiao, B. Shi, J. N. Liu, Z. Xie, X. Chen, Q. Zhang, S. Z. Qiao, Angew. Chem., Int. Ed. 2020, 59, 9171.
- 33X. F. Cheng, J. H. He, H. Q. Ji, H. Y. Zhang, Q. Cao, W. J. Sun, C. L. Yan, J. M. Lu, Adv. Mater. 2022, 34, 2205767.
- 34Y. Zhang, J. Liu, J. Wang, Y. Zhao, D. Luo, A. Yu, X. Wang, Z. Chen, Angew. Chem., Int. Ed. 2021, 60, 26622.
- 35J. Wang, W. Qiu, G. Li, J. Liu, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, X. Wang, Z. Chen, Energy Storage Mater. 2022, 46, 269.
- 36T. Huang, Y. Sun, J. Wu, Z. Shi, Y. Ding, M. Wang, C. Su, Y. y. Li, J. Sun, Adv. Funct. Mater. 2022, 32, 2203902.
- 37Y. Yang, K. Mao, S. Gao, H. Huang, G. Xia, Z. Lin, P. Jiang, C. Wang, H. Wang, Q. Chen, Adv. Mater. 2018, 30, 1801732.
- 38J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng, C. Jiang, H. Dong, L. Liu, S. Zhang, X. Zhang, Nat. Commun. 2020, 11, 4341.
- 39J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G. Wang, Z. Wang, G. Wu, Nat. Catal. 2018, 1, 935.
- 40H. Zhang, W. Cheng, D. Luan, X. W. D. Lou, Angew. Chem., Int. Ed. 2021, 60, 13177.
- 41M. Wang, W. Yang, X. Li, Y. Xu, L. Zheng, C. Su, B. Liu, ACS Energy Lett. 2021, 6, 379.
- 42L. Jiao, J. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2021, 143, 19417.
- 43W. Zang, T. Yang, H. Zou, S. Xi, H. Zhang, X. Liu, Z. Kou, Y. Du, Y. P. Feng, L. Shen, L. Duan, J. Wang, S. J. Pennycook, ACS Catal. 2019, 9, 10166.
- 44Y. Liu, Z. Wei, B. Zhong, H. Wang, L. Xia, T. Zhang, X. Duan, D. Jia, Y. Zhou, X. Huang, Energy Storage Mater. 2021, 35, 12.
- 45Y. Li, G. Chen, J. Mou, Y. Liu, S. Xue, T. Tan, W. Zhong, Q. Deng, T. Li, J. Hu, C. Yang, K. Huang, M. Liu, Energy Storage Mater. 2020, 28, 196.
- 46C. Wang, H. Song, C. Yu, Z. Ullah, Z. Guan, R. Chu, Y. Zhang, L. Zhao, Q. Li, L. Liu, J. Mater. Chem. A 2020, 8, 3421.
- 47J. Kim, S. J. Kim, E. Jung, D. H. Mok, V. K. Paidi, J. Lee, H. S. Lee, Y. Jeoun, W. Ko, H. Shin, B. H. Lee, S. Y. Kim, H. Kim, J. H. Kim, S. P. Cho, K. S. Lee, S. Back, S. H. Yu, Y. E. Sung, T. Hyeon, Adv. Funct. Mater. 2022, 32, 2110857.
- 48X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
- 49P. J. Beldon, L. Fabian, R. S. Stein, A. Thirumurugan, A. K. Cheetham, T. Friscic, Angew. Chem., Int. Ed. 2010, 49, 9640.
- 50Q. Wang, T. Ina, W.-T. Chen, L. Shang, F. Sun, S. Wei, D. Sun-Waterhouse, S. G. Telfer, T. Zhang, G. I. N. Waterhouse, Sci. Bull. 2020, 65, 1743.
- 51X. Liang, Z. Li, H. Xiao, T. Zhang, P. Xu, H. Zhang, Q. Gao, L. Zheng, Chem. Mater. 2021, 33, 5542.
- 52L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385.
- 53W. Liu, K. Zhang, L. Ma, R. Ning, Z. Chen, J. Li, Y. Yan, T. Shang, Z. Lyu, Z. Li, K. Xie, K. P. Loh, Energy Storage Mater. 2022, 49, 1.
- 54H. Cai, G. Zhang, X. Zhang, B. Chen, Z. Lu, H. Xu, R. Gao, C. Shi, Small 2022, 18, 2200911.
- 55H. Tian, X. Cui, H. Dong, G. Meng, F. Kong, Y. Chen, L. Peng, C. Chen, Z. Chang, J. Shi, Energy Storage Mater. 2021, 37, 274.
- 56Z. Guo, Y. Xie, J. Xiao, Z. J. Zhao, Y. Wang, Z. Xu, Y. Zhang, L. Yin, H. Cao, J. Gong, J. Am. Chem. Soc. 2019, 141, 12005.
- 57S. Chen, T. Luo, X. Li, K. Chen, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, Y. Chen, C. Ma, L. Zhu, Y. R. Lu, T. S. Chan, M. Zhu, E. Cortes, M. Liu, J. Am. Chem. Soc. 2022, 144, 14505.
- 58H. Shang, W. Sun, R. Sui, J. Pei, L. Zheng, J. Dong, Z. Jiang, D. Zhou, Z. Zhuang, W. Chen, J. Zhang, D. Wang, Y. Li, Nano Lett. 2020, 20, 5443.
- 59F. Ma, K. Srinivas, X. Zhang, Z. Zhang, Y. Wu, D. Liu, W. Zhang, Q. Wu, Y. Chen, Adv. Funct. Mater. 2022, 32, 2206113.
- 60Y. Ding, Q. Cheng, J. Wu, T. Yan, Z. Shi, M. Wang, D. Yang, P. Wang, L. Zhang, J. Sun, Adv. Mater. 2022, 34, 2202256.
- 61C. Zhou, M. Li, N. Hu, J. Yang, H. Li, J. Yan, P. Lei, Y. Zhuang, S. Guo, Adv. Funct. Mater. 2022, 32, 2204635.
- 62M. Shi, Z. Liu, S. Zhang, S. Liang, Y. Jiang, H. Bai, Z. Jiang, J. Chang, J. Feng, W. Chen, H. Yu, S. Liu, T. Wei, Z. Fan, Adv. Energy Mater. 2022, 12, 2103657.
- 63L. Ma, W. Zhang, L. Wang, Y. Hu, G. Zhu, Y. Wang, R. Chen, T. Chen, Z. Tie, J. Liu, Z. Jin, ACS Nano 2018, 12, 4868.
- 64Z. Yuan, H. J. Peng, T. Z. Hou, J. Q. Huang, C. M. Chen, D. W. Wang, X. B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519.
- 65Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, Y. Cui, J. Am. Chem. Soc. 2012, 134, 15387.
- 66B. Qin, Y. Cai, P. Wang, Y. Zou, J. Cao, J. Qi, Energy Storage Mater. 2022, 47, 345.
- 67J. Yan, X. Liu, B. Li, Adv. Sci. 2016, 3, 1600101.
- 68W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ACS Nano 2021, 15, 7114.
- 69G. Zhou, A. Yang, G. Gao, X. Yu, J. Xu, C. Liu, Y. Ye, A. Pei, Y. Wu, Y. Peng, Y. Li, Z. Liang, K. Liu, L.-W. Wang, Y. Cui, Sci. Adv. 2020, 6, eaay5098.