Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation
Zhijuan Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZhijie Kong
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorShasha Cui
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorLuyu Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorFen Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Yanyong Wang
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuangyin Wang
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuang-quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZhijuan Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorZhijie Kong
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorShasha Cui
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorLuyu Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorFen Wang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Yanyong Wang
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuangyin Wang
State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shuang-quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1J. Wang, J. Wang, Z. Kong, K. Lv, C. Teng, Y. Zhu, Adv. Mater. 2017, 29, 1703044.
- 2a) A. Midilli, M. Ay, I. Dincer, M. A. Rosen, Renewable Sustainable Energy Rev. 2005, 9, 255; b) R. Wang, Y. Wei, L. An, R. Yang, L. Guo, Z. Weng, P. Da, W. Chen, J. Jin, J. Li, P. Xi, Chin. J. Chem. 2020, 38, 772; c) Z. Liu, G. Wang, J. Guo, S. Wang, S.-Q. Zang, Nano Res. 2023, 16, 334.
- 3M. Ni, D. Y. C. Leung, M. K. H. Leung, Int. J. Hydrogen Energy 2007, 32, 3238.
- 4L. Zhang, N. Sun, M. Wang, T. Wu, W. Wei, C. H. Pang, Int. J. Energy Res. 2021, 45, 19789.
- 5H. Sun, X. Xu, H. Kim, W. Jung, W. Zhou, Z. Shao, Energy Environ. Mater. 2022, 0, e12441.
10.1002/eem2.12441 Google Scholar
- 6P. J. McHugh, A. D. Stergiou, M. D. Symes, Adv. Energy Mater. 2020, 10, 2002453.
- 7a) Z.-P. Wu, X. F. Lu, S.-Q. Zang, X. W. Lou, Adv. Funct. Mater. 2020, 30, 1910274; b) W. Sun, Z. Wei, J. Qi, L. Kang, J. Li, J. Xie, B. Tang, Y. Xie, Chin. J. Chem. 2021, 39, 2347; c) N. Ismail, F. Qin, C. Fang, D. Liu, B. Liu, X. Liu, Z.-L. Wu, Z. Chen, W. Chen, Aggregate 2021, 2, e106.
- 8F. Wang, S. S. Stahl, Acc. Chem. Res. 2020, 53, 561.
- 9Q. Zhao, Z. Yan, C. Chen, J. Chen, Chem. Rev. 2017, 117, 10121.
- 10a) K. E. Sickafus, J. M. Wills, N. W. Grimes, J. Am. Ceram. Soc. 1999, 82, 3279; b) M. G. Brik, A. Suchocki, A. Kamińska, Inorg. Chem. 2014, 53, 5088.
- 11F. L. Sutherland, K. Zaw, S. Meffre, G. Giuliani, A. E. Fallick, I. T. Graham, G. B. Webb, Aust. J. Earth Sci. 2009, 56, 1003.
- 12A. Nakamura, K. Matsunaga, J. Tohma, T. Yamamoto, Y. Ikuhara, Nat. Mater. 2003, 2, 453.
- 13Y. Dai, X. Gao, Q. Wang, X. Wan, C. Zhou, Y. Yang, Chem. Soc. Rev. 2021, 50, 5590.
- 14I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, Y. Ikuhara, Nat. Nanotechnol. 2013, 8, 266.
- 15M.-S. Park, J. Kim, K. J. Kim, J.-W. Lee, J. H. Kim, Y. Yamauchi, Phys. Chem. Chem. Phys. 2015, 17, 30963.
- 16Y. Xiong, Y. Yang, X. Feng, F. J. DiSalvo, H. D. Abruña, J. Am. Chem. Soc. 2019, 141, 4412.
- 17X.-M. Liu, X. Cui, K. Dastafkan, H.-F. Wang, C. Tang, C. Zhao, A. Chen, C. He, M. Han, Q. Zhang, J. Energy Chem. 2021, 53, 290.
- 18J. Ma, H. Wei, Y. Liu, X. Ren, Y. Li, F. Wang, X. Han, E. Xu, X. Cao, G. Wang, F. Ren, S. Wei, Int. J. Hydrogen Energy 2020, 45, 21205.
- 19S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang, S. Yang, L. Liang, J. Wu, Y. Xie, Angew. Chem., Int. Ed. 2016, 55, 698.
- 20C. Li, J. Yu, L. Yang, J. Zhao, W. Kong, T. Wang, A. M. Asiri, Q. Li, X. Sun, Inorg. Chem. 2019, 58, 9597.
- 21Z. Zhou, C. Chen, M. Gao, B. Xia, J. Zhang, Green Chem. 2019, 21, 6699.
- 22a) M. U. A. Prathap, R. Srivastava, Nano Energy 2013, 2, 1046; b) M. Fang, W.-B. Xu, S. Han, P. Cao, W. Xu, D. Zhu, Y. Lu, W. Liu, Mater. Chem. Front. 2021, 5, 3717.
- 23J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 24P. Sekar, L. Calvillo, C. Tubaro, M. Baron, A. Pokle, F. Carraro, A. Martucci, S. Agnoli, ACS Catal. 2017, 7, 7695.
- 25Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang, X. Sun, ACS Catal. 2018, 8, 2236.
- 26J. Zhang, X. Shang, H. Ren, J. Chi, H. Fu, B. Dong, C. Liu, Y. Chai, Adv. Mater. 2019, 31, 1905107.
- 27L. Leng, X. Zeng, H. Song, T. Shu, H. Wang, S. Liao, J. Mater. Chem. A 2015, 3, 15626.
- 28J. Peng, Y. Yuan, W. Yuan, K. Peng, Int. J. Hydrogen Energy 2021, 46, 24117.
- 29S. Luo, X. Li, B. Zhang, Z. Luo, M. Luo, ACS Appl. Mater. Interfaces 2019, 11, 26891.
- 30H. Li, S. Sun, S. Xi, Y. Chen, T. Wang, Y. Du, M. Sherburne, J. W. Ager, A. C. Fisher, Z. J. Xu, Chem. Mater. 2018, 30, 6839.
- 31a) Y. Sun, X. Ren, S. Sun, Z. Liu, S. Xi, Z. J. Xu, Angew. Chem., Int. Ed. 2021, 60, 14536; b) C. Wei, Z. Feng, G. G. Scherer, J. Barber, Y. Shao-Horn, Z. J. Xu, Adv. Mater. 2017, 29, 1606800.
- 32Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu, S. Zhao, Z.-Q. Liu, Angew. Chem., Int. Ed. 2022, 61, e202114696.
- 33H. B. Tao, L. Fang, J. Chen, H. B. Yang, J. Gao, J. Miao, S. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 9978.
- 34C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen, S. Zang, Y. Wang, X. Yao, S. Wang, Mater. Today 2019, 31, 47.
- 35Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.
- 36F. A. Kroger, Annu. Rev. Mater. Sci. 1977, 7, 449.
- 37X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Energy Environ. Sci. 2020, 13, 4536.
- 38a) L. Lin, N. Miao, G. G. Wallace, J. Chen, D. A. Allwood, Adv. Energy Mater. 2021, 11, 2100695; b) Z. Liu, Z. Zhao, Y. Wang, S. Dou, D. Yan, D. Liu, Z. Xia, S. Wang, Adv. Mater. 2017, 29, 1606207.
- 39W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.
- 40Z. Xiao, C. Xie, Y. Wang, R. Chen, S. Wang, J. Energy Chem. 2021, 53, 208.
- 41A. Nilsson, L. G. Pettersson, J. Norskov, Chemical Bonding at Surfaces and Interfaces, Elsevier, Amsterdam 2011.
- 42a) T. Quast, S. Varhade, S. Saddeler, Y.-T. Chen, C. Andronescu, S. Schulz, W. Schuhmann, Angew. Chem., Int. Ed. 2021, 60, 23444; b) T. Quast, H. B. Aiyappa, S. Saddeler, P. Wilde, Y.-T. Chen, S. Schulz, W. Schuhmann, Angew. Chem., Int. Ed. 2021, 60, 3576.
- 43L. Calvillo, F. Carraro, O. Vozniuk, V. Celorrio, L. Nodari, A. E. Russell, D. Debellis, D. Fermin, F. Cavani, S. Agnoli, G. Granozzi, J. Mater. Chem. A 2018, 6, 7034.
- 44a) N. Ortiz Peña, D. Ihiawakrim, M. Han, B. Lassalle-Kaiser, S. Carenco, C. Sanchez, C. Laberty-Robert, D. Portehault, O. Ersen, ACS Nano 2019, 13, 11372; b) C. Ma, Y. Yun, T. Zhang, H. Suo, L. Yan, X. Shen, Y. Li, Y. Yang, ChemCatChem 2021, 13, 4350.
- 45a) Y. Liu, M. Xia, L. Yao, M. Mensi, D. Ren, M. Grätzel, K. Sivula, N. Guijarro, Adv. Funct. Mater. 2021, 31, 2010081; b) H.-Y. Wang, S.-F. Hung, Y.-Y. Hsu, L. Zhang, J. Miao, T.-S. Chan, Q. Xiong, B. Liu, J. Phys. Chem. Lett. 2016, 7, 4847.
- 46H. Khan, A. Naskar, S. Bera, in Metal Oxide Defects, Vol. 61 (Eds: V. Kumar, S. Som, V. Sharma, H. C. Swart), Elsevier, Amsterdam 2023.
10.1016/B978-0-323-85588-4.00007-6 Google Scholar
- 47a) Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang, Z. J. Xu, Adv. Mater. 2018, 30, 1802912; b) S.-F. Hung, Y.-Y. Hsu, C.-J. Chang, C.-S. Hsu, N.-T. Suen, T.-S. Chan, H. M. Chen, Adv. Energy Mater. 2018, 8, 1701686.
- 48V. Maruthapandian, M. Mathankumar, V. Saraswathy, B. Subramanian, S. Muralidharan, ACS Appl. Mater. Interfaces 2017, 9, 13132.
- 49Y. Tian, L. Cao, P. Qin, ChemCatChem 2019, 11, 4420.
- 50Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan, Y. Du, Z. J. Xu, Adv. Mater. 2018, 30, 1705407.
- 51L. Wang, Q. Liu, N. Ta, H. Fan, E. Wang, ChemistrySelect 2021, 6, 3512.
- 52L. Wen, X. Li, R. Zhang, H. Liang, Q. Zhang, C. Su, Y.-J. Zeng, ACS Appl. Mater. Interfaces 2021, 13, 14181.
- 53J. Guo, G. Wang, S. Cui, B. Xia, Z. Liu, S.-Q. Zang, J. Colloid Interface Sci. 2023, 629, 346.
- 54R. Wei, X. Bu, W. Gao, R. A. B. Villaos, G. Macam, Z.-Q. Huang, C. Lan, F.-C. Chuang, Y. Qu, J. C. Ho, ACS Appl. Mater. Interfaces 2019, 11, 33012.
- 55L. Huang, D. Chen, G. Luo, Y.-R. Lu, C. Chen, Y. Zou, C.-L. Dong, Y. Li, S. Wang, Adv. Mater. 2019, 31, 1901439.
- 56C. Zhou, S. Zhao, H. Meng, Y. Han, Q. Jiang, B. Wang, X. Shi, W. Zhang, L. Zhang, R. Zhang, Nano Lett. 2021, 21, 9633.
- 57J. Shan, C. Ye, S. Chen, T. Sun, Y. Jiao, L. Liu, C. Zhu, L. Song, Y. Han, M. Jaroniec, Y. Zhu, Y. Zheng, S.-Z. Qiao, J. Am. Chem. Soc. 2021, 143, 5201.
- 58a) X. Zhao, F. Yin, X. He, B. Chen, G. Li, Electrochim. Acta 2020, 363, 137230; b) C. H. Choi, S. H. Park, S. I. Woo, Phys. Chem. Chem. Phys. 2012, 14, 6842.
- 59M. Shi, Z. Huang, H. Liu, J. He, W. Zeng, Q. Wu, Y. Zhao, M. Tian, S. Mu, Electrochim. Acta 2019, 327, 135059.
- 60a) J. Bian, X. Cheng, X. Meng, J. Wang, J. Zhou, S. Li, Y. Zhang, C. Sun, ACS Appl. Energy Mater. 2019, 2, 2296; b) S. V. S. Mers, V. Maruthapandian, V. Ganesh, ChemistrySelect 2018, 3, 8752.
- 61H. Zeng, M. H. Oubla, X. Zhong, N. Alonso-Vante, F. Du, Y. Xie, Y. Huang, J. Ma, Appl. Catal., B 2021, 281, 119535.
- 62a) J. Jin, J. Yin, H. Liu, B. Huang, Y. Hu, H. Zhang, M. Sun, Y. Peng, P. Xi, C.-H. Yan, Angew. Chem., Int. Ed. 2021, 60, 14117; b) B. Fei, Z. Chen, Y. Ha, R. Wang, H. Yang, H. Xu, R. Wu, Chem. Eng. J. 2020, 394, 124926.
- 63N. M. Umesh, J. A. Jesila, S.-F. Wang, K. S. S. Devi, M. Govindasamy, A. A. Alothman, R. A. Alshgari, Colloids Surf., B 2021, 200, 111577.
- 64N. Kumar T R, S. Kamalakannan, M. Prakash, B. Viswanathan, B. Neppolian, ACS Appl. Energy Mater. 2022, 5, 2104.
- 65R. Zhang, Y.-C. Zhang, L. Pan, G.-Q. Shen, N. Mahmood, Y.-H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu, J.-J. Zou, ACS Catal. 2018, 8, 3803.
- 66L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem., Int. Ed. 2016, 55, 5277.
- 67S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 2018, 53, 296.
- 68W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer Science & Business Media, New York, 2012.
- 69X. Li, X. Su, Y. Pei, J. Liu, X. Zheng, K. Tang, G. Guan, X. Hao, J. Mater. Chem. A 2019, 7, 10745.
- 70G. Zhang, J. Yang, H. Wang, H. Chen, J. Yang, F. Pan, ACS Appl. Mater. Interfaces 2017, 9, 16159.
- 71J. Mei, T. Liao, Z. Sun, Energy Environ. Mater. 2022, 5, 115.
- 72a) G. Zhao, K. Rui, S. X. Dou, W. Sun, J. Mater. Chem. A 2020, 8, 6393; b) X. Li, Z. Kou, J. Wang, Small Methods 2021, 5, 2001010; c) Z. Liu, Z. Xiao, G. Luo, R. Chen, C.-L. Dong, X. Chen, J. Cen, H. Yang, Y. Wang, D. Su, Y. Li, S. Wang, Small 2019, 15, 1904903; d) L. Dai, M. Liu, Y. Song, J. Liu, F. Wang, Nano Energy 2016, 27, 185.
- 73T. Zhang, S. Zhao, C. Zhu, J. Shi, C. Su, J. Yang, M. Wang, J. Li, J. Li, P. Liu, C. Wang, Nano Res. 2023, 16, 624.
- 74B. Liu, J. Cheng, H.-Q. Peng, D. Chen, X. Cui, D. Shen, K. Zhang, T. Jiao, M. Li, C.-S. Lee, W. Zhang, J. Mater. Chem. A 2019, 7, 775.
- 75Y. Lu, C. Li, Y. Zhang, X. Cao, G. Xie, M. Wang, D. Peng, K. Huang, B. Zhang, T. Wang, W. Junsheng, Y. Huang, Nano Energy 2021, 83, 105800.
- 76a) A. R. Jadhav, J. M. C. Puguan, H. Kim, ACS Sustainable Chem. Eng. 2017, 5, 11069; b) C. Chen, Y. Tuo, Q. Lu, H. Lu, S. Zhang, Y. Zhou, J. Zhang, Z. Liu, Z. Kang, X. Feng, D. Chen, Appl. Catal., B 2021, 287, 119953; c) J. Huang, J. Han, R. Wang, Y. Zhang, X. Wang, X. Zhang, Z. Zhang, Y. Zhang, B. Song, S. Jin, ACS Energy Lett. 2018, 3, 1698; d) Y.-F. Li, Z.-P. Liu, J. Am. Chem. Soc. 2018, 140, 1783; e) J. Xie, S. Cao, L. Gao, F. Lei, P. Hao, B. Tang, ChemComm. 2019, 55, 9841; f) Y. Zhou, S. Sun, C. Wei, Y. Sun, P. Xi, Z. Feng, Z. J. Xu, Adv. Mater. 2019, 31, 1902509; g) M. Liu, J. Liu, Z. Li, F. Wang, ACS Appl. Mater. Interfaces 2018, 10, 7052; h) R. R. Chen, Y. Sun, S. J. H. Ong, S. Xi, Y. Du, C. Liu, O. Lev, Z. J. Xu, Adv. Mater. 2020, 32, 1907976; i) Y. Huang, S. L. Zhang, X. F. Lu, Z.-P. Wu, D. Luan, X. W. Lou, Angew. Chem., Int. Ed. 2021, 60, 11841; j) M. Li, Y. Deng, G. Wu, S. Xue, Y. Yan, Z. Liu, J. Zou, D. Yang, A. Dong, Aggregate 2021, 2, e17; k) X. Han, G. He, Y. He, J. Zhang, X. Zheng, L. Li, C. Zhong, W. Hu, Y. Deng, T.-Y. Ma, Adv. Energy Mater. 2018, 8, 1702222; l) J. Yu, F. A. Garcés-Pineda, J. González-Cobos, M. Peña-Díaz, C. Rogero, S. Giménez, M. C. Spadaro, J. Arbiol, S. Barja, J. R. Galán-Mascarós, Nat. Commun. 2022, 13, 4341; m) Ö. N. Avcı, L. Sementa, A. Fortunelli, ACS Catal. 2022, 12, 9058; n) C. W. Cady, G. Gardner, Z. O. Maron, M. Retuerto, Y. B. Go, S. Segan, M. Greenblatt, G. C. Dismukes, ACS Catal. 2015, 5, 3403.
- 77a) Z. Liu, G. Wang, X. Zhu, Y. Wang, Y. Zou, S. Zang, S. Wang, Angew. Chem., Int. Ed. 2020, 59, 4736; b) H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H. M. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 36; c) S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, Z. J. Xu, Angew. Chem., Int. Ed. 2019, 58, 6042.
- 78Q. Liu, Z. Chen, Z. Yan, Y. Wang, E. Wang, S. Wang, S. Wang, G. Sun, ChemElectroChem 2018, 5, 1080.
- 79S. Hong, K. Ham, J. Hwang, S. Kang, M. H. Seo, Y.-W. Choi, B. Han, J. Lee, K. Cho, Adv. Funct. Mater. 2023, 33, 2209543.
- 80a) K. Zhu, F. Shi, X. Zhu, W. Yang, Nano Energy 2020, 73, 104761. b) Z. Cai, Y. Bi, E. Hu, W. Liu, N. Dwarica, Y. Tian, X. Li, Y. Kuang, Y. Li, X.-Q. Yang, H. Wang, X. Sun, Adv. Energy Mater. 2018, 8, 1701694.
- 81Z. Xiao, Y. Wang, Y.-C. Huang, Z. Wei, C.-L. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Energy Environ. Sci. 2017, 10, 2563.
- 82a) M. E. C. Pascuzzi, M. van Velzen, J. P. Hofmann, E. J. M. Hensen, ChemCatChem 2021, 13, 459; b) K.-L. Yan, J.-F. Qin, J.-H. Lin, B. Dong, J.-Q. Chi, Z.-Z. Liu, F.-N. Dai, Y.-M. Chai, C.-G. Liu, J. Mater. Chem. A 2018, 6, 5678; c) J. S. Mondschein, J. F. Callejas, C. G. Read, J. Y. C. Chen, C. F. Holder, C. K. Badding, R. E. Schaak, Chem. Mater. 2017, 29, 950; d) Q. Lai, V. Vediyappan, K.-F. Aguey-Zinsou, H. Matsumoto, Adv. Energy Sustainability Res. 2021, 2, 2100086.
- 83a) Y. Zhu, J. Wang, T. Koketsu, M. Kroschel, J.-M. Chen, S.-Y. Hsu, G. Henkelman, Z. Hu, P. Strasser, J. Ma, Nat. Commun. 2022, 13, 7754; b) N. Q. Tran, T. A. Le, H. Kim, Y. Hong, Y. Cho, G. H. Park, H. Kim, M. Kim, J. Lee, W.-S. Yoon, H. Lee, ACS Sustainable Chem. Eng. 2019, 7, 16640.
- 84J. Huang, H. Sheng, R. D. Ross, J. Han, X. Wang, B. Song, S. Jin, Nat. Commun. 2021, 12, 3036.
- 85L. Gao, X. Cui, C. D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev. 2021, 50, 8428.
- 86L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci. 2015, 8, 2347.
- 87X. Zhou, X. Liao, X. Pan, M. Yan, L. He, P. Wu, Y. Zhao, W. Luo, L. Mai, Nano Energy 2021, 83, 105748.
- 88a) G. M. Tomboc, S. Venkateshalu, Q.-T. Ngo, S. Choi, B. G. Pollet, H. Lee, K. Lee, Chem. Eng. J. 2023, 454, 140254; b) T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
- 89Y. Sun, J. Wu, Y. Xie, X. Wang, K. Ma, Z. Tian, Z. Zhang, Q. Liao, W. Zheng, Z. Kang, Y. Zhang, Adv. Funct. Mater. 2022, 32, 2207116.
- 90X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 2013, 5, 3601.
- 91Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen, S. Wang, J. Am. Chem. Soc. 2020, 142, 12087.
- 92a) G. Yang, Y. Jiao, H. Yan, C. Tian, H. Fu, Small Struct. 2021, 2, 2100095; b) H. Luo, J. Barrio, N. Sunny, A. Li, L. Steier, N. Shah, I. E. L. Stephens, M.-M. Titirici, Adv. Energy Mater. 2021, 11, 2101180; c) F. W. S. Lucas, R. G. Grim, S. A. Tacey, C. A. Downes, J. Hasse, A. M. Roman, C. A. Farberow, J. A. Schaidle, A. Holewinski, ACS Energy Lett. 2021, 6, 1205.
- 93a) Z. Zhong, M. Li, J. Wang, J. Lin, J. Pan, S. Jiang, A. Xie, S. Luo, Int. J. Hydrogen Energy 2022, 47, 13933; b) H. Wan, C. Dai, L. Jin, S. Luo, F. Meng, G. Chen, Y. Duan, C. Liu, Q. Xu, J. Lu, Z. J. Xu, ACS Appl. Mater. Interfaces 2022, 14, 14293.
- 94a) H. Choi, S. Surendran, D. Kim, Y. Lim, J. Lim, J. Park, J. K. Kim, M.-K. Han, U. Sim, Environ. Sci.: Nano 2021, 8, 3110; b) L. Sha, K. Ye, G. Wang, J. Shao, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, Chem. Eng. J. 2019, 359, 1652; c) S. Adhikari, Y. Kwon, D.-H. Kim, Chem. Eng. J. 2020, 402, 126192; d) Y. Li, H. Jiang, Z. Cui, S. Zhu, Z. Li, S. Wu, L. Ma, X. Han, Y. Liang, J. Phys. Chem. C 2021, 125, 9190.
- 95a) R. P. Antony, A. K. Satpati, B. N. Jagatap, ChemElectroChem 2017, 4, 2989; b) K. Xiang, Z. Song, D. Wu, X. Deng, X. Wang, W. You, Z. Peng, L. Wang, J.-L. Luo, X.-Z. Fu, J. Mater. Chem. A 2021, 9, 6316; c) S. Chen, D. Huang, D. Liu, H. Sun, W. Yan, J. Wang, M. Dong, X. Tong, W. Fan, Appl. Catal., B 2021, 291, 120065; d) Y. Cao, J. Ge, M. Jiang, F. Zhang, X. Lei, ACS Appl. Mater. Interfaces 2021, 13, 29491; e) M. Wang, D. Li, W. Jia, J. Zhao, J. Ma, D. Ma, T. Tang, T. Hu, J. Jia, H. Wu, Electrochim. Acta 2022, 411, 140048; f) B. Talluri, K. Yoo, J. Kim, J. Environ. Chem. Eng. 2022, 10, 106932.
- 96a) I. van Scodeller, K. De Oliveira Vigier, E. Muller, C. Ma, F. Guégan, R. Wischert, F. Jérôme, ChemSusChem 2021, 14, 313; b) M. Sun, Y. Wang, C. Sun, Y. Qi, J. Cheng, Y. Song, L. Zhang, Chin. Chem. Lett. 2022, 33, 385; c) W. Wang, M. Wang, Catal. Sci. Technol. 2021, 11, 7326; d) L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li, L. Niu, ChemSusChem 2018, 11, 2547; e) C. Chen, Z. Zhou, J. Liu, B. Zhu, H. Hu, Y. Yang, G. Chen, M. Gao, J. Zhang, Appl. Catal., B 2022, 307, 121209; f) M. J. Kang, H. Park, J. Jegal, S. Y. Hwang, Y. S. Kang, H. G. Cha, Appl. Catal., B 2019, 242, 85; g) B. Zhu, Y. Qin, J. Du, F. Zhang, X. Lei, ACS Sustainable Chem. Eng. 2021, 9, 11790; h) Y. Tao, S. Fan, X. Li, J. Yang, J. Wang, M. O. Tadé, S. Liu, ACS Appl. Nano Mater. 2022, 5, 16564; i) R. Zhong, Q. Wang, L. Du, Y. Pu, S. Ye, M. Gu, Z. Conrad Zhang, L. Huang, Appl. Surf. Sci. 2022, 584, 152553; j) Y. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li, W. Chen, L. Yang, B. Zhou, Y. Wu, Z. Kong, Z. Huang, Y. Li, C.-L. Dong, S. Wang, Y. Zou, ACS Catal. 2022, 12, 4242.
- 97X. Han, H. Sheng, C. Yu, T. W. Walker, G. W. Huber, J. Qiu, S. Jin, ACS Catal. 2020, 10, 6741.
- 98Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu, Y. Liu, Y. Li, N. He, J. Shi, S. Wang, Angew. Chem., Int. Ed. 2020, 59, 19215.
- 99J. Zhu, S. Mu, Adv. Funct. Mater. 2020, 30, 2001097.
- 100Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li, J. Chen, Y. Zou, S. Wang, Adv. Mater. 2021, 33, 2007056.
- 101Y. Lu, T. Liu, C.-L. Dong, C. Yang, L. Zhou, Y.-C. Huang, Y. Li, B. Zhou, Y. Zou, S. Wang, Adv. Mater. 2022, 34, 2107185.
- 102K. Gu, D. Wang, C. Xie, T. Wang, G. Huang, Y. Liu, Y. Zou, L. Tao, S. Wang, Angew. Chem., Int. Ed. 2021, 60, 20253.
- 103H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng, Angew. Chem., Int. Ed. 2017, 56, 3594.
- 104Z. Zhou, Y.-n. Xie, L. Sun, Z. Wang, W. Wang, L. Jiang, X. Tao, L. Li, X.-H. Li, G. Zhao, Appl. Catal., B 2022, 305, 121072.
- 105Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Y. Liu, Y. Li, N. Zhang, W. Chen, L. Zhou, H. Lin, S. Wang, Sci. China: Chem. 2020, 63, 980.
- 106Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu, Z. Li, L. Ma, R. Ge, H. Zhou, Z. Li, X. Kong, L. Zheng, J. Zhou, H. Duan, ACS Catal. 2022, 12, 12432.
- 107T.-G. Vo, P.-Y. Ho, C.-Y. Chiang, Appl. Catal., B 2022, 300, 120723.
- 108T.-H.-H. Le, T.-G. Vo, C.-Y. Chiang, J. Catal. 2021, 404, 560.