Ho-Ion-Polymer/Graphene Heterojunctions Toward Room-Temperature Ferromagnets
Wenlai Xia
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorChenjian Li
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorShixian Zhang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorXuelin Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorShan Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorQuanling Yang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorWei Li
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Chuanxi Xiong
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Huang
State Key Laboratory for New Textile Materials & Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Sunshine Avenue 1, Wuhan, 430200 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qing Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorWenlai Xia
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorChenjian Li
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorShixian Zhang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorXuelin Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorShan Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorQuanling Yang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorWei Li
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Chuanxi Xiong
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jing Huang
State Key Laboratory for New Textile Materials & Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Sunshine Avenue 1, Wuhan, 430200 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Qing Wang
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070 P. R. China
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Organic ferromagnetic materials offer great promise for spintronic devices, carbon-based chips, and quantum communications, but remain as a challenging issue due to their low saturation magnetization and/or unsustainable ferromagnetic properties. To date, magnetic ion polymers have displayed paramagnetism without exception at room-temperature. In this study, it is reported for the first time that, owing to the structural restriction and charge exchange of Ho ion by polymer/graphene π–π stacking heterojunctions, holmium ion polymer composites exhibited typical hysteresis lines of ferromagnetic materials at room temperature. The room-temperature ferromagnetic ion polymer composite presented the highest saturation magnetization value of 3.36 emu g−1 and unprecedented sustainable ferromagnetism, compared to reported room-temperature organic ferromagnetic materials. Accordingly, prepared ferromagnetic composites also achieved impressive wave absorption properties, with a maximum reflection loss of as much as −57.32 dB and a broad absorption bandwidth of 5.05 GHz. These findings may promote the development of room-temperature organic ferromagnetic materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202300385-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
smll202300385-sup-0002-VideoS1.mp42 MB | Supplemental Video 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Zhang, S. Han, Y. Lee, M. J. Coak, J. Kim, I. Hwang, S. Son, J. Shin, M. Lim, D. Jo, K. Kim, D. Kim, H. W. Lee, J. G. Park, Adv. Mater. 2021, 33, 2004110.
- 2L. Lu, X. Wang, C. Xiong, L. Yao, Sci. China: Chem. 2015, 58, 793.
- 3Z. Liu, J. Huang, B. Liu, D. Fang, T. Wang, Q. Yang, L. Dong, G.-H. Hu, C. Xiong, Energy Storage Mater. 2020, 24, 138.
- 4J. Huang, Q. Li, D. Li, Y. Wang, L. Dong, H. Xie, J. Wang, C. Xiong, Langmuir 2013, 29, 10223.
- 5J. Ma, J. Hu, Z. Li, C. W. Nan, Adv. Mater. 2011, 23, 1062.
- 6H. J. Zhao, W. Ren, Y. Yang, J. Iniguez, X. M. Chen, L. Bellaiche, Nat. Commun. 2014, 5, 4021.
- 7L. Dong, S. Liu, H. Gao, N. Ding, W. Tremel, C. Xiong, Q. Zhu, W. Knoll, Small 2009, 5, 1153.
- 8M. Wei, K. Song, Y. Yang, Q. Huang, Y. Tian, X. Hao, W. Qin, Adv. Mater. 2020, 32, 2003293.
- 9B. Narymbetov, A. Omerzu, V. V. Kabanov, M. Tokumoto, H. Kobayashi, D. Mihailovic, Nature 2000, 407, 883.
- 10Y. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, V. N. Spector, Nature 1987, 326, 370.
- 11S. Liang, H. Yang, H. Yang, B. Tao, A. Djeffal, M. Chshiev, W. Huang, X. Li, A. Ferri, R. Desfeux, S. Mangin, D. Lacour, M. Hehn, O. Copie, K. Dumesnil, Y. Lu, Adv. Mater. 2016, 28, 10204.
- 12H. Liu, C. Zhang, H. Malissa, M. Groesbeck, M. Kavand, R. McLaughlin, S. Jamali, J. Hao, D. Sun, R. A. Davidson, L. Wojcik, J. S. Miller, C. Boehme, Z. V. Vardeny, Nat. Mater. 2018, 17, 308.
- 13J. H. Pixley, E. Y. Andrei, Science 2019, 365, 543.
- 14Y. W. Ma, Y. H. Lu, J. B. Yi, Y. P. Feng, T. S. Herng, X. Liu, D. Q. Gao, D. S. Xue, J. M. Xue, J. Y. Ouyang, J. Ding, Nat. Commun. 2012, 3, 727.
- 15F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science 2018, 362, 1400.
- 16J. G. Park, B. A. Collins, L. E. Darago, T. Runcevski, M. E. Ziebel, M. L. Aubrey, H. Z. H. Jiang, E. Velasquez, M. A. Green, J. D. Goodpaster, J. R. Long, Nat. Chem. 2021, 13, 594.
- 17J. Zhang, W. Kosaka, Y. Kitagawa, H. Miyasaka, Nat. Chem. 2021, 13, 191.
- 18Q. Jiang, J. Zhang, Z. Mao, Y. Yao, D. Zhao, Y. Jia, D. Hu, Y. Ma, Adv. Mater. 2022, 34, 2108103.
- 19J. Mahmood, J.-B. Baek, Chem 2019, 5, 1012.
- 20J. Mahmood, J. Park, D. Shin, H.-J. Choi, J.-M. Seo, J.-W. Yoo, J.-B. Baek, Chem 2018, 4, 2357.
- 21H. Phan, T. S. Herng, D. Wang, X. Li, W. Zeng, J. Ding, K. P. Loh, A. T. Shen Wee, J. Wu, Chem 2019, 5, 1223.
- 22J.-X. Lin, Y.-H. Zhang, E. Morissette, Z. Wang, S. Liu, D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, J. I. A. Li, Science 2022, 375, 437.
- 23T. Kong, K. Stolze, E. I. Timmons, J. Tao, D. Ni, S. Guo, Z. Yang, R. Prozorov, R. J. Cava, Adv. Mater. 2019, 31, 1808074.
- 24T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. van 't Erve, Y. P. Kabanov, D. Rees, Y. Li, M. T. Suzuki, S. Patankar, M. Ikhlas, C. L. Chien, R. Arita, R. D. Shull, J. Orenstein, S. Nakatsuji, Nat. Photonics 2018, 12, 73.
- 25J. Y. Chauleau, T. Chirac, S. Fusil, V. Garcia, W. Akhtar, J. Tranchida, P. Thibaudeau, I. Gross, C. Blouzon, A. Finco, M. Bibes, B. Dkhil, D. D. Khalyavin, P. Manuel, V. Jacques, N. Jaouen, M. Viret, Nat. Mater. 2020, 19, 386.
- 26S. Thomas, H. Li, J. L. Bredas, Adv. Mater. 2019, 31, 1900355.
- 27M. Döbbelin, V. Jovanovski, I. Llarena, L. J. Claros Marfil, G. Cabañero, J. Rodriguez, D. Mecerreyes, Polym. Chem. 2011, 2, 1275.
- 28P. M. Carrasco, L. Tzounis, F. J. Mompean, K. Strati, P. Georgopanos, M. Garcia-Hernandez, M. Stamm, G. Cabañero, I. Odriozola, A. Avgeropoulos, I. Garcia, Macromolecules 2013, 46, 1860.
- 29J. Li, S. Ji, X. Yu, X. Yuan, K. Zhang, L. Ren, Macromolecules 2022, 55, 2067.
- 30S. Sadjadi, J. Mol. Liq. 2021, 323, 114994.
- 31Y.-X. Ma, J. Yang, S.-H. Chen, H.-T. Lin, C.-C. Yan, S.-P. Zhuo, X.-D. Wang, Matter 2022, 5, 3706.
- 32S. Soll, Q. Zhao, J. Weber, J. Yuan, Chem. Mater. 2013, 25, 3003.
- 33S. Ghazali-Esfahani, H. Song, E. Păunescu, F. D. Bobbink, H. Liu, Z. Fei, G. Laurenczy, M. Bagherzadeh, N. Yan, P. J. Dyson, Green Chem. 2013, 15, 1584.
- 34Z. Cheng, R. Wang, Y. Cao, Z. Zhang, W. Ma, T. Zhang, F. Fan, Y. Huang, ACS Appl. Mater. Interfaces 2022, 14, 3218.
- 35C. Gao, G. Chen, X. Wang, J. Li, Y. Zhou, J. Wang, Chem. Commun. 2015, 51, 4969.
- 36X. Zhang, Z. Zhao, J. Xu, Q. Ouyang, C. Zhu, X. Zhang, X. Zhang, Y. Chen, Carbon 2021, 177, 216.
- 37D. A. Beattie, A. Arcifa, I. Delcheva, B. A. Le Cerf, S. V. MacWilliams, A. Rossi, M. Krasowska, Colloids Surf., A 2018, 544, 78.
- 38K. Kaliyamoorthi, S. Ramasamy, A. S. Pillai, A. Alexander, A. Arivarasu, I. V. M. V. Enoch, Mater. Lett. 2021, 285, 129164.
- 39M. Osial, P. Rybicka, M. Pękała, G. Cichowicz, M. Cyrański, P. Krysiński, Nanomaterials 2018, 8, 430.
- 40T.-M. Pan, C.-H. Chen, J.-H. Liu, RSC Adv. 2014, 4, 29300.
- 41E. E. El-Katori, M. I. Nessim, M. A. Deyab, K. Shalabi, J. Mol. Liq. 2021, 337, 116467.
- 42H. Park, N. Son, B. H. Park, C. Liu, S. W. Joo, M. Kang, Chem. Eng. J. 2022, 430, 133104.
- 43G. Ning, C. Xu, L. Hao, O. Kazakova, Z. Fan, H. Wang, K. Wang, J. Gao, W. Qian, F. Wei, Carbon 2013, 51, 390.
- 44P. Brown, G. N. Smith, E. P. Hernandez, C. James, J. Eastoe, W. C. Nunes, C. M. Settens, T. A. Hatton, P. J. Baker, J Phys Condens Matter 2016, 28, 176002.
- 45W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247.
- 46S. Bag, A. Samanta, P. Bhunia, C. R. Raj, Int. J. Hydrogen Energy 2016, 41, 22134.
- 47S. Begic, E. Jonsson, F. Chen, M. Forsyth, Phys. Chem. Chem. Phys. 2017, 19, 30010.
- 48S. Y. Son, J.-H. Kim, E. Song, K. Choi, J. Lee, K. Cho, T.-S. Kim, T. Park, Macromolecules 2018, 51, 2572.
- 49P. Brown, A. Bushmelev, C. P. Butts, J. C. Eloi, I. Grillo, P. J. Baker, A. M. Schmidt, J. Eastoe, Langmuir 2013, 29, 3246.
- 50M. T. Dejpasand, E. Saievar-Iranizad, A. Bayat, A. Montaghemi, S. R. Ardekani, Mater. Res. Bull. 2020, 128, 110886.
- 51T. Xue, T. Wang, J. Nie, J Photochem Photobiol 2020, 397, 112551.
- 52A. K. Swain, A. K. Nayak, S. Mhin, H. Han, Int. J. Appl. Ceram. Technol. 2021, 19, 639.